24,492 research outputs found
Dual variables and a connection picture for the Euclidean Barrett-Crane model
The partition function of the SO(4)- or Spin(4)-symmetric Euclidean
Barrett-Crane model can be understood as a sum over all quantized geometries of
a given triangulation of a four-manifold. In the original formulation, the
variables of the model are balanced representations of SO(4) which describe the
quantized areas of the triangles. We present an exact duality transformation
for the full quantum theory and reformulate the model in terms of new variables
which can be understood as variables conjugate to the quantized areas. The new
variables are pairs of S^3-values associated to the tetrahedra. These
S^3-variables parameterize the hyperplanes spanned by the tetrahedra (locally
embedded in R^4), and the fact that there is a pair of variables for each
tetrahedron can be viewed as a consequence of an SO(4)-valued parallel
transport along the edges dual to the tetrahedra. We reconstruct the parallel
transport of which only the action of SO(4) on S^3 is physically relevant and
rewrite the Barrett-Crane model as an SO(4) lattice BF-theory living on the
2-complex dual to the triangulation subject to suitable constraints whose form
we derive at the quantum level. Our reformulation of the Barrett-Crane model in
terms of continuous variables is suitable for the application of various
analytical and numerical techniques familiar from Statistical Mechanics.Comment: 33 pages, LaTeX, combined PiCTeX/postscript figures, v2: note added,
TeX error correcte
The interaction between transpolar arcs and cusp spots
Transpolar arcs and cusp spots are both auroral phenomena which occur when
the interplanetary magnetic field is northward. Transpolar arcs are associated
with magnetic reconnection in the magnetotail, which closes magnetic flux and
results in a "wedge" of closed flux which remains trapped, embedded in the
magnetotail lobe. The cusp spot is an indicator of lobe reconnection at the
high-latitude magnetopause; in its simplest case, lobe reconnection
redistributes open flux without resulting in any net change in the open flux
content of the magnetosphere. We present observations of the two phenomena
interacting--i.e., a transpolar arc intersecting a cusp spot during part of its
lifetime. The significance of this observation is that lobe reconnection can
have the effect of opening closed magnetotail flux. We argue that such events
should not be rare
Geometry of Deformations of Relativistic Membranes
A kinematical description of infinitesimal deformations of the worldsheet
spanned in spacetime by a relativistic membrane is presented. This provides a
framework for obtaining both the classical equations of motion and the
equations describing infinitesimal deformations about solutions of these
equations when the action describing the dynamics of this membrane is
constructed using {\it any} local geometrical worldsheet scalars. As examples,
we consider a Nambu membrane, and an action quadratic in the extrinsic
curvature of the worldsheet.Comment: 20 pages, Plain Tex, sign errors corrected, many new references
added. To appear in Physical Review
Stability of Solid State Reaction Fronts
We analyze the stability of a planar solid-solid interface at which a
chemical reaction occurs. Examples include oxidation, nitridation, or silicide
formation. Using a continuum model, including a general formula for the
stress-dependence of the reaction rate, we show that stress effects can render
a planar interface dynamically unstable with respect to perturbations of
intermediate wavelength
Vorton Formation
In this paper we present the first analytic model for vorton formation. We
start by deriving the microscopic string equations of motion in Witten's
superconducting model, and show that in the relevant chiral limit these
coincide with the ones obtained from the supersonic elastic models of Carter
and Peter. We then numerically study a number of solutions of these equations
of motion and thereby suggest criteria for deciding whether a given
superconducting loop configuration can form a vorton. Finally, using a recently
developed model for the evolution of currents in superconducting strings we
conjecture, by comparison with these criteria, that string networks formed at
the GUT phase transition should produce no vortons. On the other hand, a
network formed at the electroweak scale can produce vortons accounting for up
to 6% of the critical density. Some consequences of our results are discussed.Comment: 41 pages; color figures 3-6 not included, but available from authors.
To appear in Phys. Rev.
Application of remote sensing to state and regional problems
There are no author-identified significant results in this report
Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way post-processing
We derive a bound for the security of QKD with finite resources under one-way
post-processing, based on a definition of security that is composable and has
an operational meaning. While our proof relies on the assumption of collective
attacks, unconditional security follows immediately for standard protocols like
Bennett-Brassard 1984 and six-states. For single-qubit implementations of such
protocols, we find that the secret key rate becomes positive when at least
N\sim 10^5 signals are exchanged and processed. For any other discrete-variable
protocol, unconditional security can be obtained using the exponential de
Finetti theorem, but the additional overhead leads to very pessimistic
estimates
Localized versus itinerant magnetic moments in Na0.72CoO2
Based on experimental 59Co-NMR data in the temperature range between 0.1 and
300 K, we address the problem of the character of the Co 3d-electron based
magnetism in Na0.7CoO2. Temperature dependent 59Co-NMR spectra reveal different
Co environments below 300 K and their differentiation increases with decreasing
temperature. We show that the 23Na- and 59Co-NMR data may consistently be
interpreted by assuming that below room temperature the Co 3d-electrons are
itinerant. Their magnetic interaction appears to favor an antiferromagnetic
coupling, and we identify a substantial orbital contribution corb to the
d-electron susceptibility. At low temperatures corb seems to acquire some
temperature dependence, suggesting an increasing influence of spin-orbit
coupling. The temperature dependence of the spin-lattice relaxation rate
T1-1(T) confirms significant variations in the dynamics of this electronic
subsystem between 200 and 300K, as previously suggested. Below 200 K, Na0.7CoO2
may be viewed as a weak antiferromagnet with TN below 1 K but this scenario
still leaves a number of open questions.Comment: 8.7 pages, 6 Figures, submitted to Phys. Rev.
Two inequivalent sublattices and orbital ordering in MnV2O4 studied by 51V NMR
We report detailed 51V NMR spectra in a single crystal of MnV2O4. The
vanadium spectrum reveals two peaks in the orbitally ordered state, which arise
from different internal hyperfine fields at two different V sublattices. These
internal fields evolve smoothly with externally applied field, and show no
change in structure that would suggest a change of the orbital ordering. The
result is consistent with the orbital ordering model recently proposed by
Sarkar et al. [Phys. Rev. Lett. 102, 216405 (2009)] in which the same orbital
that is a mixture of t_2g orbitals rotates by about 45 alternately
within and between orbital chains in the I4_1/a tetragonal space group.Comment: 4 pages, 4 figures, title changed, published in PRB as a rapid com
Rotating Black Holes in Higher Dimensions with a Cosmological Constant
We present the metric for a rotating black hole with a cosmological constant
and with arbitrary angular momenta in all higher dimensions. The metric is
given in both Kerr-Schild and Boyer-Lindquist form. In the Euclidean-signature
case, we also obtain smooth compact Einstein spaces on associated S^{D-2}
bundles over S^2, infinitely many for each odd D\ge 5. Applications to string
theory and M-theory are indicated.Comment: 8 pages, Latex. Short version, with more compact notation, of
hep-th/0404008. To appear in Phys. Rev. Let
- …