106 research outputs found

    Is juvenile anchovy a feeding resource for the demersal community in the Bay of Biscay? On the availability of pelagic prey to demersal predators

    Get PDF
    The role that juvenile anchovy (Engraulis encrasicolus) play as a food resource for the demersal community in the southern Bay of Biscay is assessed using 21 years of anchovy abundance data and demersal predator diets. During the study period, a total of 26 fish and elasmobranch species preyed on anchovy either frequently or occasionally. Predators with a crustacean-based diet targeted the smaller anchovy individuals. The size range of anchovy juveniles (centred at 7.5–8.9 cm) was comparable to that of the largest nektonic–benthic crustaceans, but generally smaller than other demersal and pelagic fish prey. Hake (Merluccius merluccius) and megrim (Lepidorhombus whiffiagonis) were the predators that consumed the highest number of anchovy, one of the main prey items driving the variability of their diets. Anchovy consumption conformed only partially to the abundance of anchovy in the southern Bay of Biscay, suggesting that factors other than abundance might condition its availability to demersal predators. Prey size could be one of them, as the size of the anchovy preyed on proved to be significantly smaller than the individuals collected with bottom trawls. However, other factors, such as the vertical position of the shoals of anchovy juveniles, could also constrain anchovy availability to demersal predators

    EFECTO DE UN EXTRACTO VEGETAL EN LA GERMINACIÓN DE SEMILLAS DE CHILE (Capsicum annuum L.) BAJO CONDICIONES SALINAS

    Get PDF
    La germinación y el establecimiento de plántulas de chile son normalmente lentos y extremadamente erráticos bajo condiciones de estrés salino. La tolerancia a la salinidad durante la germinación de semillas de chile (Capsicum annuum L. cv. Sandía) fue evaluada en cincuenta semillas colocadas en cada una de 60 cajas de Petri de plástico conteniendo diferentes soluciones. Los tratamientos incluyeron una solución control (agua de osmosis inversa, AOI), otro con solamente un extracto vegetal liquido, uno con solución Hoagland modificada, y seis tratamientos salinos para cada solución (extracto orgánico y solución Hoagland). El experimento fue realizado en una cámara de crecimiento a 25 ºC bajo un diseño experimental completamente al azar. Los resultados mostraron que el porcentaje de germinación fue más alto en los tratamientos donde se aplicó el extracto orgánico a los tratamientos más salinos. Sin embargo no hubo diferencias entre todos los tratamientos de ambas soluciones dando en promedio 93% de germinación contra 85% en el control. El mismo efecto fue observado en la longitud de la radícula. La longitud de la radícula de semillas germinadas con el extracto orgánico promedió 6.2 cm contra 5.4 cm de aquellas germinadas con la solución Hoagland. La longitud de la radícula del control promedió 4.4 cm. Un efecto contrario fue observado en la longitud del hipocotilo. Semillas germinadas con la solución Hoagland tuvieron una longitud promedio del hipocotilo de 5.4 cm contra 4.9 cm de aquellas germinadas con la solución del extracto orgánico. El control tuvo una longitud de 3.6 cm. Estos resultados indican el efecto osmoacondiconador de la semilla de chile previo a la germinación y desarrollo de la radícula de la solución del extracto orgánico y el efecto de los nutrientes contenidos en la solución Hoagland sobre el crecimiento del hipocotilo

    A single dose of ChAdOx1 Chik vaccine induces neutralising antibodies against four chikungunya virus lineages in a phase 1 clinical trial

    Get PDF
    Chikungunya virus (CHIKV) is a reemerging mosquito-borne virus that causes swift outbreaks. Major concerns are the persistent and disabling polyarthralgia in infected individuals. Here we present the results from a first-in-human trial of the candidate simian adenovirus vectored vaccine ChAdOx1 Chik, expressing the CHIKV full-length structural polyprotein (Capsid, E3, E2, 6k and E1). 24 adult healthy volunteers aged 18–50 years, were recruited in a dose escalation, open-label, nonrandomized and uncontrolled phase 1 trial (registry NCT03590392). Participants received a single intramuscular injection of ChAdOx1 Chik at one of the three preestablished dosages and were followed-up for 6 months. The primary objective was to assess safety and tolerability of ChAdOx1 Chik. The secondary objective was to assess the humoral and cellular immunogenicity. ChAdOx1 Chik was safe at all doses tested with no serious adverse reactions reported. The vast majority of solicited adverse events were mild or moderate, and self-limiting in nature. A single dose induced IgG and Tcell responses against the CHIKV structural antigens. Broadly neutralizing antibodies against the four CHIKV lineages were found in all participants and as early as 2 weeks after vaccination. In summary, ChAdOx1 Chik showed excellent safety, tolerability and 100% PRNT50 seroconversion after a single dose

    First M87 Event Horizon Telescope Results. VII. Polarization of the Ring

    Get PDF
    In 2017 April, the Event Horizon Telescope (EHT) observed the near-horizon region around the supermassive black hole at the core of the M87 galaxy. These 1.3 mm wavelength observations revealed a compact asymmetric ring-like source morphology. This structure originates from synchrotron emission produced by relativistic plasma located in the immediate vicinity of the black hole. Here we present the corresponding linear-polarimetric EHT images of the center of M87. We find that only a part of the ring is significantly polarized. The resolved fractional linear polarization has a maximum located in the southwest part of the ring, where it rises to the level of similar to 15%. The polarization position angles are arranged in a nearly azimuthal pattern. We perform quantitative measurements of relevant polarimetric properties of the compact emission and find evidence for the temporal evolution of the polarized source structure over one week of EHT observations. The details of the polarimetric data reduction and calibration methodology are provided. We carry out the data analysis using multiple independent imaging and modeling techniques, each of which is validated against a suite of synthetic data sets. The gross polarimetric structure and its apparent evolution with time are insensitive to the method used to reconstruct the image. These polarimetric images carry information about the structure of the magnetic fields responsible for the synchrotron emission. Their physical interpretation is discussed in an accompanying publication

    Constraints on black-hole charges with the 2017 EHT observations of M87*

    Get PDF
    Our understanding of strong gravity near supermassive compact objects has recently improved thanks to the measurements made by the Event Horizon Telescope (EHT). We use here the M87* shadow size to infer constraints on the physical charges of a large variety of nonrotating or rotating black holes. For example, we show that the quality of the measurements is already sufficient to rule out that M87* is a highly charged dilaton black hole. Similarly, when considering black holes with two physical and independent charges, we are able to exclude considerable regions of the space of parameters for the doubly-charged dilaton and the Sen black holes

    The Event Horizon Telescope Image of the Quasar NRAO 530

    Get PDF
    We report on the observations of the quasar NRAO 530 with the Event Horizon Telescope (EHT) on 2017 April 5−7, when NRAO 530 was used as a calibrator for the EHT observations of Sagittarius A*. At z = 0.902, this is the most distant object imaged by the EHT so far. We reconstruct the first images of the source at 230 GHz, at an unprecedented angular resolution of ∼20 μas, both in total intensity and in linear polarization (LP). We do not detect source variability, allowing us to represent the whole data set with static images. The images reveal a bright feature located on the southern end of the jet, which we associate with the core. The feature is linearly polarized, with a fractional polarization of ∼5%-8%, and it has a substructure consisting of two components. Their observed brightness temperature suggests that the energy density of the jet is dominated by the magnetic field. The jet extends over 60 μas along a position angle ∼ −28°. It includes two features with orthogonal directions of polarization (electric vector position angle), parallel and perpendicular to the jet axis, consistent with a helical structure of the magnetic field in the jet. The outermost feature has a particularly high degree of LP, suggestive of a nearly uniform magnetic field. Future EHT observations will probe the variability of the jet structure on microarcsecond scales, while simultaneous multiwavelength monitoring will provide insight into the high-energy emission origin

    Comparison of Polarized Radiative Transfer Codes Used by the EHT Collaboration

    Get PDF

    First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring

    Get PDF
    The Event Horizon Telescope (EHT) has mapped the central compact radio source of the elliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Here we consider the physical implications of the asymmetric ring seen in the 2017 EHT data. To this end, we construct a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by general relativistic ray tracing. We compare the observed visibilities with this library and confirm that the asymmetric ring is consistent with earlier predictions of strong gravitational lensing of synchrotron emission from a hot plasma orbiting near the black hole event horizon. The ring radius and ring asymmetry depend on black hole mass and spin, respectively, and both are therefore expected to be stable when observed in future EHT campaigns. Overall, the observed image is consistent with expectations for the shadow of a spinning Kerr black hole as predicted by general relativity. If the black hole spin and M87's large scale jet are aligned, then the black hole spin vector is pointed away from Earth. Models in our library of non-spinning black holes are inconsistent with the observations as they do not produce sufficiently powerful jets. At the same time, in those models that produce a sufficiently powerful jet, the latter is powered by extraction of black hole spin energy through mechanisms akin to the Blandford-Znajek process. We briefly consider alternatives to a black hole for the central compact object. Analysis of existing EHT polarization data and data taken simultaneously at other wavelengths will soon enable new tests of the GRMHD models, as will future EHT campaigns at 230 and 345 GHz

    First M87 Event Horizon Telescope Results. III. Data Processing and Calibration

    Get PDF
    We present the calibration and reduction of Event Horizon Telescope (EHT) 1.3 mm radio wavelength observations of the supermassive black hole candidate at the center of the radio galaxy M87 and the quasar 3C 279, taken during the 2017 April 5-11 observing campaign. These global very long baseline interferometric observations include for the first time the highly sensitive Atacama Large Millimeter/submillimeter Array (ALMA); reaching an angular resolution of 25 μas, with characteristic sensitivity limits of ∼1 mJy on baselines to ALMA and ∼10 mJy on other baselines. The observations present challenges for existing data processing tools, arising from the rapid atmospheric phase fluctuations, wide recording bandwidth, and highly heterogeneous array. In response, we developed three independent pipelines for phase calibration and fringe detection, each tailored to the specific needs of the EHT. The final data products include calibrated total intensity amplitude and phase information. They are validated through a series of quality assurance tests that show consistency across pipelines and set limits on baseline systematic errors of 2% in amplitude and 1° in phase. The M87 data reveal the presence of two nulls in correlated flux density at ∼3.4 and ∼8.3 Gλ and temporal evolution in closure quantities, indicating intrinsic variability of compact structure on a timescale of days, or several light-crossing times for a few billion solar-mass black hole. These measurements provide the first opportunity to image horizon-scale structure in M87
    corecore