1,942 research outputs found
Discerning Incompressible and Compressible Phases of Cold Atoms in Optical Lattices
Experiments with cold atoms trapped in optical lattices offer the potential
to realize a variety of novel phases but suffer from severe spatial
inhomogeneity that can obscure signatures of new phases of matter and phase
boundaries. We use a high temperature series expansion to show that
compressibility in the core of a trapped Fermi-Hubbard system is related to
measurements of changes in double occupancy. This core compressibility filters
out edge effects, offering a direct probe of compressibility independent of
inhomogeneity. A comparison with experiments is made
Thermalization of strongly interacting bosons after spontaneous emissions in optical lattices
We study the out-of-equilibrium dynamics of bosonic atoms in a 1D optical
lattice, after the ground-state is excited by a single spontaneous emission
event, i.e. after an absorption and re-emission of a lattice photon. This is an
important fundamental source of decoherence for current experiments, and
understanding the resulting dynamics and changes in the many-body state is
important for controlling heating in quantum simulators. Previously it was
found that in the superfluid regime, simple observables relax to values that
can be described by a thermal distribution on experimental time-scales, and
that this breaks down for strong interactions (in the Mott insulator regime).
Here we expand on this result, investigating the relaxation of the momentum
distribution as a function of time, and discussing the relationship to
eigenstate thermalization. For the strongly interacting limit, we provide an
analytical analysis for the behavior of the system, based on an effective
low-energy Hamiltonian in which the dynamics can be understood based on
correlated doublon-holon pairs.Comment: 8 pages, 5 figure
The use of data-mining for the automatic formation of tactics
This paper discusses the usse of data-mining for the automatic formation of tactics. It was presented at the Workshop on Computer-Supported Mathematical Theory Development held at IJCAR in 2004. The aim of this project is to evaluate the applicability of data-mining techniques to the automatic formation of tactics from large corpuses of proofs. We data-mine information from large proof corpuses to find commonly occurring patterns. These patterns are then evolved into tactics using genetic programming techniques
Maximum occupation number for composite boson states
One of the major differences between fermions and bosons is that fermionic
states have a maximum occupation number of one, whereas the occupation number
for bosonic states is in principle unlimited. For bosons that are made up of
fermions, one could ask the question to what extent the Pauli principle for the
constituent fermions would limit the boson occupation number. Intuitively one
can expect the maximum occupation number to be proportional to the available
volume for the bosons divided by the volume occupied by the fermions inside one
boson, though a rigorous derivation of this result has not been given before.
In this letter we show how the maximum occupation number can be calculated from
the ground-state energy of a fermionic generalized pairing problem. A very
accurate analytical estimate of this eigenvalue is derived. From that a general
expression is obtained for the maximum occupation number of a composite boson
state, based solely on the intrinsic fermionic structure of the bosons. The
consequences for Bose-Einstein condensates of excitons in semiconductors and
ultra cold trapped atoms are discussed.Comment: 4 pages, Revte
Influence of the trap shape on the superfluid-Mott transition in ultracold atomic gases
The coexistence of superfluid and Mott insulator, due to the quadratic
confinement potential in current optical lattice experiments, makes the
accurate detection of the superfluid-Mott transition difficult. Studying
alternative trapping potentials which are experimentally realizable and have a
flatter center, we find that the transition can be better resolved, but at the
cost of a more difficult tuning of the particle filling. When mapping out the
phase diagram using local probes and the local density approximation we find
that the smoother gradient of the parabolic trap is advantageous.Comment: 5 pages, 6 figure
Bosons Confined in Optical Lattices: the Numerical Renormalization Group revisited
A Bose-Hubbard model, describing bosons in a harmonic trap with a
superimposed optical lattice, is studied using a fast and accurate variational
technique (MF+NRG): the Gutzwiller mean-field (MF) ansatz is combined with a
Numerical Renormalization Group (NRG) procedure in order to improve on both.
Results are presented for one, two and three dimensions, with particular
attention to the experimentally accessible momentum distribution and possible
satellite peaks in this distribution. In one dimension, a comparison is made
with exact results obtained using Stochastich Series Expansion.Comment: 10 pages, 15 figure
Molecular dynamics study of the hydration of lanthanum(III) and europium(III) including many-body effects
Lanthanides complexes are widely used as contrast agents in magnetic resonance imaging (MRI) and are involved in many fields such as organic synthesis, catalysis, and nuclear waste management. The complexation of the ion by the solvent or an organic ligand and the resulting properties (for example the relaxivity in MRI) are mainly governed by the structure and dynamics of the coordination shells. All of the MD approachs already carried out for the lanthanide(III) hydration failed due to the lack of accurate representation of many-body effects. We present the first molecular dynamics simulation including these effects that accounts for the experimental results from a structural and dynamic (water exchange rate) point of view
Evidence for hard and soft substructures in thermoelectric SnSe
SnSe is a topical thermoelectric material with a low thermal conductivity
which is linked to its unique crystal structure. We use low-temperature heat
capacity measurements to demonstrate the presence of two characteristic
vibrational energy scales in SnSe with Debye temperatures thetaD1 = 345(9) K
and thetaD2 = 154(2) K. These hard and soft substructures are quantitatively
linked to the strong and weak Sn-Se bonds in the crystal structure. The heat
capacity model predicts the temperature evolution of the unit cell volume,
confirming that this two-substructure model captures the basic thermal
properties. Comparison with phonon calculations reveals that the soft
substructure is associated with the low energy phonon modes that are
responsible for the thermal transport. This suggests that searching for
materials containing highly divergent bond distances should be a fruitful route
for discovering low thermal conductivity materials.Comment: Accepted by Applied Physics Letter
Ultracold atoms in one-dimensional optical lattices approaching the Tonks-Girardeau regime
Recent experiments on ultracold atomic alkali gases in a one-dimensional
optical lattice have demonstrated the transition from a gas of soft-core bosons
to a Tonks-Girardeau gas in the hard-core limit, where one-dimensional bosons
behave like fermions in many respects. We have studied the underlying many-body
physics through numerical simulations which accommodate both the soft-core and
hard-core limits in one single framework. We find that the Tonks-Girardeau gas
is reached only at the strongest optical lattice potentials. Results for
slightly higher densities, where the gas develops a Mott-like phase already at
weaker optical lattice potentials, show that these Mott-like short range
correlations do not enhance the convergence to the hard-core limit.Comment: 4 pages, 3 figures, replaced with published versio
Optimal Monte Carlo Updating
Based on Peskun's theorem it is shown that optimal transition matrices in
Markov chain Monte Carlo should have zero diagonal elements except for the
diagonal element corresponding to the largest weight. We will compare the
statistical efficiency of this sampler to existing algorithms, such as
heat-bath updating and the Metropolis algorithm. We provide numerical results
for the Potts model as an application in classical physics. As an application
in quantum physics we consider the spin 3/2 XY model and the Bose-Hubbard model
which have been simulated by the directed loop algorithm in the stochastic
series expansion framework.Comment: 6 pages, 5 figures, replaced with published versio
- …
