68 research outputs found

    Downregulation of Mcl-1 has anti-inflammatory pro-resolution effects and enhances bacterial clearance from the lung

    Get PDF
    Phagocytes not only coordinate acute inflammation and host defense at mucosal sites, but also contribute to tissue damage. Respiratory infection causes a globally significant disease burden and frequently progresses to acute respiratory distress syndrome, a devastating inflammatory condition characterized by neutrophil recruitment and accumulation of protein-rich edema fluid causing impaired lung function. We hypothesized that targeting the intracellular protein myeloid cell leukemia 1 (Mcl-1) by a cyclin-dependent kinase inhibitor (AT7519) or a flavone (wogonin) would accelerate neutrophil apoptosis and resolution of established inflammation, but without detriment to bacterial clearance. Mcl-1 loss induced human neutrophil apoptosis, but did not induce macrophage apoptosis nor impair phagocytosis of apoptotic neutrophils. Neutrophil-dominant inflammation was modelled in mice by either endotoxin or bacteria (Escherichia coli). Downregulating inflammatory cell Mcl-1 had anti-inflammatory, pro-resolution effects, shortening the resolution interval (R(i)) from 19 to 7 h and improved organ dysfunction with enhanced alveolar–capillary barrier integrity. Conversely, attenuating drug-induced Mcl-1 downregulation inhibited neutrophil apoptosis and delayed resolution of endotoxin-mediated lung inflammation. Importantly, manipulating lung inflammatory cell Mcl-1 also accelerated resolution of bacterial infection (R(i); 50 to 16 h) concurrent with enhanced bacterial clearance. Therefore, manipulating inflammatory cell Mcl-1 accelerates inflammation resolution without detriment to host defense against bacteria, and represents a target for treating infection-associated inflammation

    Seizure-related 6 homolog like 2 autoimmunity Neurologic syndrome and antibody effects

    Get PDF
    Objective To describe the clinical syndrome of 4 new patients with seizure-related 6 homolog like 2 antibodies (SEZ6L2-abs), study the antibody characteristics, and evaluate their effects on neuronal cultures. Methods SEZ6L2-abs were initially identified in serum and CSF of a patient with cerebellar ataxia by immunohistochemistry on rat brain sections and immunoprecipitation from rat cerebellar neurons. We used a cell-based assay (CBA) of HEK293 cells transfected with SEZ6L2 to test the serum of 95 patients with unclassified neuropil antibodies, 331 with different neurologic disorders, and 10 healthy subjects. Additional studies included characterization of immunoglobulin G (IgG) subclasses and the effects of SEZ6L2-abs on cultures of rat hippocampal neurons. Results In addition to the index patient, SEZ6L2-abs were identified by CBA in 3/95 patients with unclassified neuropil antibodies but in none of the 341 controls. The median age of the 4 patients was 62 years (range: 54-69 years), and 2 were female. Patients presented with subacute gait ataxia, dysarthria, and mild extrapyramidal symptoms. Initial brain MRI was normal, and CSF pleocytosis was found in only 1 patient. None improved with immunotherapy. SEZ6L2-abs recognized conformational epitopes. IgG4 SEZ6L2-abs were found in all 4 patients, and it was the predominant subclass in 2. SEZ6L2-abs did not alter the number of total or synaptic SEZ6L2 or the AMPA glutamate receptor 1 (GluA1) clusters on the surface of hippocampal neurons. Conclusions SEZ6L2-abs associate with a subacute cerebellar syndrome with frequent extrapyramidal symptoms. The potential pathogenic effect of the antibodies is not mediated by internalization of the antigen.Neurological Motor Disorder

    Functional interplay between p63 and p53 controls RUNX1 function in the transition from proliferation to differentiation in human keratinocytes

    Get PDF
    The interfollicular epidermis is continuously renewed, thanks to a regulated balance between proliferation and differentiation. The ΔNp63 transcription factor has a key role in the control of this process. It has been shown that ΔNp63 directly regulates Runt-related transcription factor 1 (RUNX1) transcription factor expression in mouse keratinocytes. The present study showed for the first time that RUNX1 is expressed in normal human interfollicular epidermis and that its expression is tightly regulated during the transition from proliferation to differentiation. It demonstrated that ΔNp63 directly binds two different RUNX1 regulatory DNA sequences and modulates RUNX1 expression differentially in proliferative or differentiated human keratinocytes. It also showed that the regulation of RUNX1 expression by ΔNp63 is dependent on p53 and that this coregulation relies on differential binding and activation of RUNX1 regulatory sequences by ΔNp63 and p53. We also found that RUNX1 inhibits keratinocyte proliferation and activates directly the expression of KRT1, a critical actor in early keratinocyte differentiation. Finally, we described that RUNX1 expression, similar to ΔNp63 and p53, was strongly expressed and downregulated in basal cell carcinomas and squamous cell carcinomas respectively. Taken together, these data shed light on the importance of tight control of the functional interplay between ΔNp63 and p53 in regulating RUNX1 transcription factor expression for proper regulation of interfollicular epidermal homeostasis

    Autoantibodies to central nervous system neuronal surface antigens: psychiatric symptoms and psychopharmacological implications

    Get PDF
    • …
    corecore