37 research outputs found

    Olfactory Ensheathing Cell Transplantation in Experimental Spinal Cord Injury:Effect size and Reporting Bias of 62 Experimental Treatments: A Systematic Review and Meta-Analysis

    Get PDF
    Olfactory ensheathing cell (OEC) transplantation is a candidate cellular treatment approach for human spinal cord injury (SCI) due to their unique regenerative potential and autologous origin. The objective of this study was, through a meta-epidemiologic approach, (i) to assess the efficacy of OEC transplantation on locomotor recovery after traumatic experimental SCI and (ii) to estimate the likelihood of reporting bias and/or missing data. A study protocol was finalized before data collection. Embedded into a systematic review and meta-analysis, we conducted a literature research of databases including PubMed, EMBASE, and ISI Web of Science from 1949/01 to 2014/10 with no language restrictions, screened by two independent investigators. Studies were included if they assessed neurobehavioral improvement after traumatic experimental SCI, administrated no combined interventions, and reported the number of animals in the treatment and control group. Individual effect sizes were pooled using a random effects model. Details regarding the study design were extracted and impact of these on locomotor outcome was assessed by meta-regression. Missing data (reporting bias) was determined by Egger regression and Funnel-plotting. The primary study outcome assessed was improvement in locomotor function at the final time point of measurement. We included 49 studies (62 experiments, 1,164 animals) in the final analysis. The overall improvement in locomotor function after OEC transplantation, measured using the Basso, Beattie, and Bresnahan (BBB) score, was 20.3% (95% CI 17.8-29.5). One missing study was imputed by trim and fill analysis, suggesting only slight publication bias and reducing the overall effect to a 19.2% improvement of locomotor activity. Dose-response ratio supports neurobiological plausibility. Studies were assessed using a 9-point item quality score, resulting in a median score of 5 (interquartile range [IQR] 3-5). In conclusion, OEC transplantation exerts considerable beneficial effects on neurobehavioral recovery after traumatic experimental SCI. Publication bias was minimal and affirms the translational potential of efficacy, but safety cannot be adequately assessed. The data justify OECs as a cellular substrate to develop and optimize minimally invasive and safe cellular transplantation paradigms for the lesioned spinal cord embedded into state-of-the-art Phase I/II clinical trial design studies for human SCI

    Cryopreservation of mammalian oocytes and embryos: current problems and future perspectives

    Full text link

    Safety of human neural stem cell transplantation in chronic spinal cord injury.

    No full text
    The spinal cord injury (SCI) microenvironment undergoes dynamic changes over time, which could potentially affect survival or differentiation of cells in early versus delayed transplantation study designs. Accordingly, assessment of safety parameters, including cell survival, migration, fate, sensory fiber sprouting, and behavioral measures of pain sensitivity in animals receiving transplants during the chronic postinjury period is required for establishing a potential therapeutic window. The goal of the study was assessment of safety parameters for delayed transplantation of human central nervous system-derived neural stem cells (hCNS-SCns) by comparing hCNS-SCns transplantation in the subacute period, 9 days postinjury (DPI), versus the chronic period, 60 DPI, in contusion-injured athymic nude rats. Although the number of surviving human cells after chronic transplantation was lower, no changes in cell migration were detected between the 9 and 60 DPI cohorts; however, the data suggest chronic transplantation may have enhanced the generation of mature oligodendrocytes. The timing of transplantation did not induce changes in allodynia or hyperalgesia measures. Together, these data support the safety of hCNS-SCns transplantation in the chronic period post-SCI

    Preclinical Efficacy Failure of Human CNS-Derived Stem Cells for Use in the Pathway Study of Cervical Spinal Cord Injury

    No full text
    We previously showed the efficacy of multiple research cell lines (RCLs) of human CNS neural stem cells (HuCNS-SCs) in mouse and rat models of thoracic spinal cord injury (SCI), supporting a thoracic SCI clinical trial. Experts recommend in vivo preclinical testing of the intended clinical cell lot/line (CCL) in models with validity for the planned clinical target. We therefore tested the efficacy of two HuCNS-SC lines in cervical SCI: one RCL, and one CCL intended for use in the Pathway Study of cervical SCI in man. We assessed locomotor recovery and sensory function, as well as engraftment, migration, and fate. No evidence of efficacy of the CCL was observed; some data suggested a negative impact of the CCL on outcomes. These data raise questions about the development and validation of potency/comparability assays for clinical testing of cell products, and lack of US Food and Drug Administration requirements for in vivo testing of intended clinical cell lines

    Transplantation dose alters the dynamics of human neural stem cell engraftment, proliferation and migration after spinal cord injury

    Get PDF
    The effect of transplantation dose on the spatiotemporal dynamics of human neural stem cell (hNSC) engraftment has not been quantitatively evaluated in the central nervous system. We investigated changes over time in engraftment/survival, proliferation, and migration of multipotent human central nervous system-derived neural stem cells (hCNS-SCns) transplanted at doses ranging from 10,000 to 500,000 cells in spinal cord injured immunodeficient mice. Transplant dose was inversely correlated with measures of donor cell proliferation at 2 weeks post-transplant (WPT) and dose-normalized engraftment at 16 WPT. Critically, mice receiving the highest cell dose exhibited an engraftment plateau, in which the total number of engrafted human cells never exceeded the initial dose. These data suggest that donor cell expansion was inversely regulated by target niche parameters and/or transplantation density. Investigation of the response of donor cells to the host microenvironment should be a key variable in defining target cell dose in pre-clinical models of CNS disease and injury
    corecore