515 research outputs found

    Absolute proper motion of the Galactic open cluster M67

    Full text link
    We derived the absolute proper motion (PM) of the old, solar-metallicity Galactic open cluster M67 using observations collected with CFHT (1997) and with LBT (2007). About 50 galaxies with relatively sharp nuclei allow us to determine the absolute PM of the cluster. We find (mu_alpha cos(delta),mu_delta)_J2000.0 = (-9.6+/-1.1,-3.7+/-0.8) mas/yr. By adopting a line-of-sight velocity of 33.8+/-0.2 km/s, and assuming a distance of 815+/-50 pc, we explore the influence of the Galactic potential, with and without the bar and/or spiral arms, on the galactic orbit of the cluster.Comment: 7 pages, 5 figures, and 3 tables. Published in Astronomy and Astrophysics, Volume 513, id.A51

    On the Effects of Projection on Morphology

    Full text link
    We study the effects of projection of three-dimensional (3D) data onto the plane of the sky by means of numerical simulations of turbulence in the interstellar medium including the magnetic field, parameterized cooling and diffuse and stellar heating, self-gravity and rotation. We compare the physical-space density and velocity distributions with their representation in position-position-velocity (PPV) space (``channel maps''), noting that the latter can be interpreted in two ways: either as maps of the column density's spatial distribution (at a given line-of-sight (LOS) velocity), or as maps of the spatial distribution of a given value of the LOS velocity (weighted by density). This ambivalence appears related to the fact that the spatial and PPV representations of the data give significantly different views. First, the morphology in the channel maps more closely resembles that of the spatial distribution of the LOS velocity component than that of the density field, as measured by pixel-to-pixel correlations between images. Second, the channel maps contain more small-scale structure than 3D slices of the density and velocity fields, a fact evident both in subjective appearance and in the power spectra of the images. This effect may be due to a pseudo-random sampling (along the LOS) of the gas contributing to the structure in a channel map: the positions sampled along the LOS (chosen by their LOS velocity) may vary significantly from one position in the channel map to the next.Comment: 6 figures. To appear in the March 20th volume in Ap

    Six New Galactic Orbits of Globular Clusters in a Milky-Way-Like Galaxy

    Get PDF
    Absolute proper motions for six new globular clusters have recently been determined. This motivated us to obtain the Galactic orbits of these six clusters both in an axisymmetric Galactic potential and in a barred potential, such as the one of our Galaxy. Orbits are also obtained for a Galactic potential that includes spiral arms. The orbital characteristics are compared and discussed for these three cases. Tidal radii and destruction rates are also computed and discussed.Comment: 29 pages, 11 figures. Accepted for publication in Ap

    Close encounters involving RAVE stars beyond the 47 Tucanae tidal radius

    Full text link
    The most accurate 6D phase-space information from the Radial Velocity Experiment (RAVE) was used to integrate the orbits of 105 stars around the galactic globular cluster 47 Tucanae, to look for close encounters between them in the past, with a minimum distance approach less than the cluster tidal radius. The stars are currently over the distance range 3.0 kpc << d << 5.5 kpc. Using the uncertainties in the current position and velocity vector for both, star and cluster, 105 pairs of star-cluster orbits were generated in a Monte Carlo numerical scheme, integrated over 2 Gyr and considering an axisymmetric and non-axisymmetric Milky-Way-like Galactic potential, respectively. In this scheme, we identified 20 potential cluster members that had close encounters with the globular cluster 47 Tucanae, all of which have a relative velocity distribution (Vrel_{rel}) less than 200 km s−1^{-1} at the minimum distance approach. Among these potential members, 9 had close encounters with the cluster with velocities less than the escape velocity of 47 Tucanae, therefore a scenario of tidal stripping seems likely. These stars have been classified with a 93\% confidence level, leading to the identification of extratidal cluster stars. For the other 11 stars, Vrel_{rel} exceeds the escape velocity of the cluster, therefore they were likely ejected or are unassociated interlopers.Comment: 10 pages, 6 figures, 2 table, Accepted for publication in MNRA

    Risk assessment of the spanish national railway system

    Get PDF
    The principal risks in the railway industry are mainly associated with collisions, derailments and level crossing accidents. An understanding of the nature of previous accidents on the railway network is required to identify potential causes and develop safety systems and deploy safety procedures. Risk assessment is a process for determining the risk magnitude to assist with decision-making. We propose a three-step methodology to predict the mean number of fatalities in railway accidents. The first is to predict the mean number of accidents by analyzing generalized linear models and selecting the one that best fits to the available historical data on the basis of goodness-offit statistics. The second is to compute the mean number of fatalities per accident and the third is to estimate the mean number of fatalities. The methodology is illustrated on the Spanish railway system. Statistical models accounting for annual and grouped data for the 1992-2009 time period have been analyzed. After identifying the models for broad and narrow gauges, we predicted mean number of accidents and the number of fatalities for the 2010-18 time period

    Searching for tidal tails around ω\omega Centauri using RR Lyrae Stars

    Full text link
    We present a survey for RR Lyrae stars in an area of 50 deg2^2 around the globular cluster ω\omega Centauri, aimed to detect debris material from the alleged progenitor galaxy of the cluster. We detected 48 RR Lyrae stars of which only 11 have been previously reported. Ten among the eleven previously known stars were found inside the tidal radius of the cluster. The rest were located outside the tidal radius up to distances of ∌6\sim 6 degrees from the center of the cluster. Several of those stars are located at distances similar to that of ω\omega Centauri. We investigated the probability that those stars may have been stripped off the cluster by studying their properties (mean periods), calculating the expected halo/thick disk population of RR Lyrae stars in this part of the sky, analyzing the radial velocity of a sub-sample of the RR Lyrae stars, and finally, studying the probable orbits of this sub-sample around the Galaxy. None of these investigations support the scenario that there is significant tidal debris around ω\omega Centauri, confirming previous studies in the region. It is puzzling that tidal debris have been found elsewhere but not near the cluster itself.Comment: 11 pages, 11 figures, Accepte

    Effect of different stellar galactic environments on planetary discs - I. The solar neighbourhood and the birth cloud of the Sun

    Get PDF
    We have computed trajectories, distances and times of closest approaches to the Sun by stars in the solar neighbourhood with known position, radial velocity and proper motions. For this purpose, we have used a full potential model of the Galaxy that reproduces the local z-force, the Oort constants, the local escape velocity and the rotation curve of the Galaxy. From our sample, we constructed initial conditions, within observational uncertainties, with a Monte Carlo scheme for the 12 most suspicious candidates because of their small tangential motion. We find that the star Gliese 710 will have the closest approach to the Sun, with a distance of approximately 0.34 pc in 1.36 Myr in the future. We show that the effect of a flyby with the characteristics of Gliese 710 on a 100 au test particle disc representing the Solar system is negligible. However, since there is a lack of 6D data for a large percentage of stars in the solar neighbourhood, closer approaches may exist. We calculate parameters of passing stars that would cause notable effects on the solar disc. Regarding the birth cloud of the Sun, we performed experiments to reproduce roughly the observed orbital parameters such as eccentricities and inclinations of the Kuiper belt. It is now known that in Galactic environments, such as stellar formation regions, the stellar densities of new born stars are high enough to produce close encounters within 200 au. Moreover, in these Galactic environments, the velocity dispersion is relatively low, typically σ∌ 1-3 km s−1. We find that with a velocity dispersion of ∌1 km s−1 and an approach distance of about 150 au, typical of these regions, we obtain approximately the eccentricities and inclinations seen in the current Solar system. Simple analytical calculations of stellar encounters effects on the Oort Cloud are presente

    Location, orbit and energy of a meteoroid impacting the moon during the Lunar Eclipse of January 21, 2019

    Full text link
    During lunar eclipse of January 21, 2019 a meteoroid impacted the Moon producing a visible light flash. The impact was witnessed by casual observers offering an opportunity to study the phenomenon from multiple geographical locations. We use images and videos collected by observers in 7 countries to estimate the location, impact parameters (speed and incoming direction) and energy of the meteoroid. Using parallax, we achieve determining the impact location at lat. −29.43−0.21+0.30-29.43^{+0.30}_{-0.21}, lon. −67.89−0.09+0.07-67.89^{+0.07}_{-0.09} and geocentric distance as 356553 km. After devising and applying a photo-metric procedure for measuring flash standard magnitudes in multiple RGB images having different exposure times, we found that the flash, had an average G-magnitude ⟹G⟩=6.7±0.3\langle G\rangle = 6.7\pm0.3. We use gravitational ray tracing (GRT) to estimate the orbital properties and likely radiant of the impactor. We find that the meteoroid impacted the moon with a speed of 14−6+714^{+7}_{-6} km/s (70% C.L.) and at a shallow angle, Ξ<38.2\theta < 38.2 degrees. Assuming a normal error for our estimated flash brightness, educated priors for the luminous efficiency and object density, and using the GRT-computed probability distributions of impact speed and incoming directions, we calculate posterior probability distributions for the kinetic energy (median KmedK_{\rm med} = 0.8 kton), body mass (MmedM_{\rm med} = 27 kg) and diameter (dmedd_{\rm med} = 29 cm), and crater size (DmedD_{\rm med} = 9 m). If our assumptions are correct, the crater left by the impact could be detectable by prospecting lunar probes. These results arose from a timely collaboration between professional and amateur astronomers which highlight the potential importance of citizen science in astronomy.Comment: 19 pages, 11 figures, 4 tables. Data and scripts available in https://github.com/seap-udea/MoonFlashes. Accepted for publication in MNRA
    • 

    corecore