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The principal risks in the railway industry are mainly associated with collisions, 
derailments and level crossing accidents. An understanding of the nature of previous 
accidents on the railway network is required to identify potential causes and develop 
safety systems and deploy safety procedures. Risk assessment is a process for 
determining the risk magnitude to assist with decision-making. We propose a three-step 
methodology to predict the mean number of fatalities in railway accidents. The first is to 
predict the mean number of accidents by analyzing generalized linear models and 
selecting the one that best fits to the available historical data on the basis of goodness-of-
fit statistics. The second is to compute the mean number of fatalities per accident and the 
third is to estimate the mean number of fatalities. The methodology is illustrated on the 
Spanish railway system. Statistical models accounting for annual and grouped data for 
the 1992-2009 time period have been analyzed. After identifying the models for broad 
and narrow gauges, we predicted mean number of accidents and the number of fatalities 
for the 2010-18 time period. 

1. Introduction 

As in all types of transportation there are risks we have to face in the railway 
networks. The occurrence of an accident in railways infrastructures has a very 
low probability, but when an accident occurs it gets a lot of attention3. Train 
accidents sometimes lead to a number of casualties and injuries and entail 
substantial financial costs, such as damage to equipment, increased insurance 
premiums, legal costs, fines, compensations, and loss of company reputation. 

Developing safety systems and deploying safety procedures requires an 
understanding of the nature of previous accidents on the railway network to 
identify potential causes. 

Many of the railway risk assessment techniques currently used are 
comparatively mature tools. The results of using these tools are heavily reliant 



on the availability and accuracy of the risk data . However, data are usually 
incomplete or there is a high level of uncertainty involved in such data1. 

Most lines in Europe and North America were built to the so-called 
standard or international gauge (1435 mm), although there are some exceptions 
where broader gauges were chosen, like Spain and Portugal (1668 mm). Narrow 
gauge lines have also been built all around the world, mainly in mountainous 
areas or for branch lines. The total length of the broad and narrow gauge 
networks in Spain in 2009 was 13,354 km and 1,2691 km, respectively. 

According to EU Safety Directives, EU member states have established 
independent national accident investigation bodies. In Spain the task was 
assigned to the Railway Accident Investigation Committee (CIAF). C1AF 
publishes both the common safety indicators and the accident reports on its 
website and in annual reports. 

We propose a methodology that helps to improve the safety of railway 
systems by reducing the risk of fatal accidents and providing for the possibility 
of applying new strategies. 

2. Methodology 

2.1. Phase 1. Prediction of the Mean Number of Accidents 

The number of accidents is predicted by fitting statistical models to historical 
data. We have analyzed generalized linear models where the dependent variable 
is linearly related to the independent variables via a specified link function. 
These models allow for the dependent variable to have a non-normal distribution 
such as a Poisson, negative binomial, gamma' distribution and COM-Poisson4, 
while the most commonly used link functions are log and power. 

Parameter estimates are obtained using the principle of maximum 
likelihood. Selecting the model that best fits to data depends on the following 
goodness-of-fit statistics: deviance, Pearson j 2 , log-likelihood, Akaike's 
information criterion (AIC), finite sample corrected AIC (AICC), Bayesian 
information criterion (BIC) and consistent AIC (CAIC). 

Original annual data and three-year grouped data accounting for broad and 
narrow gauges were originally considered. Generalized linear models 
accounting for log and power functions were analyzed. We found that most 
goodness-of-fit statistics were better for both broad and narrow gauge when data 
were grouped, see Table 1. 

Thus, the statistical models that best fitted three-year grouped data were 
used to predict the mean number of accidents. Specifically, Poisson Power -1 



model was selected for broad gauge, see Table 2, while the Gamma Power -1 
was the best one for narrow gauge. 

Table 1. Three-year period grouped data. 

Broad Gauge NaiTOw Gauge 

1992-1994 

1995-1997 

1998-2000 

2001-2003 

2004-2006 

2007-2009 

Train-kms 

496.5 

485.6 

501.9 

519.7 

524.8 

540.2 

Accidents 

421 

304 

203 

170 

137 

135 

Fatalities 

93 

80 

58 

84 

138 

135 

Train-kms 

22.7 

24.1 

29.3 

30.0 

29.8 

29.6 

Accidents 

56 

62 

96 

46 

16 

16 

Fatalities 

41 

26 

20 

20 

17 

13 

Table 2. Goodness-of-fit statistics for grouped data and broad gauge. 

Goodness- Poisson Poisson 
of-fit Log Pow-1 

Negative 
Binomia 

ILog 

Negative 
Binomia 
1 Pow-1 

Gamma 
Log 

Gamma 
Pow-1 

COM-
Poisso 

n 
Deviance 

Pearson x2 

Log Likel. 

A1C 

A1CC 

BIC 

CA1C 

30.0 
30.8 
69.6 

145.2 

146.9 

147.9 

150.9 

22.4 
22.1 
65.8 

137.6 

139.3 

140.3 

143.3 

0.6 
0.6 

94.5 

195.0 

196.7 

197.6 

200.6 

0.5 
0.5 

94.4 

194.9 

196.6 

197.5 

200.5 

0.6 
0.6 

70.8 

149.6 

152.6 

153.1 

157.1 

0.5 
0.5 
69.3 

146.5 

149.6 

150.1 

154.1 

34.3 
35.2 
70.9 

149.7 

152.8 

153.3 

157.3 

Regarding broad gauge, based on the Poisson Power - 1 model, predictions for 
the next 19 years (2010-2018) can be computed as follows: E(yit) = 
(0.00108867013927t + 8.764125618932E-0.6tkml - 0.00306052078)1, where t 
is the time period and broad gauge train-kilometers for the 2010-18 period have 
to be previously estimated to predict the number of accidents in such period. A 
linear regression model from 1992-2009 data was used to estimate train-kms in 
2010-2018: tkmt = 10.111428574285714285t+476.06. 

For narrow gauge, the selected Gamma Power -1 model is used to make 
predictions for the number of accidents in the coming 9 years: E(y2l) = 
(0.0177103395923? - 0.00597228124517tkm, + 0.132157197445)-', where 
narrow gauge train-kilometers for the 2010-18 period is again previously 
estimated assuming a linear regression model applied to 1992-2009: tkmt = 
1.488171428571/ + 22.3914, where t is the time period. 

Table 3 shows the corresponding estimation for train-kilometers and the 
prediction of the mean number of broad and narrow gauge accidents for the 



2010-2018 period, respectively. Finally, to predict the total number of accidents 
in the 2010-18 period we just have to add the predictions for broad and narrow 
gauges in Table 3. 

Table 3. Prediction of the mean number of accidents. 

Years 

2010-2012 

2013-2015 

2016-2018 

Broad Gauge 

Train-kms (millions) 

546.8 

557.0 

567.1 

Accidents 

106.9 

95.0 

85.4 

Narrow Gauge 

Train-kms (millions) Accidents 

32.8 16.6 

34.3 14.5 

35.8 12.8 

2.2. Phase 2. Computation of the Mean Number of Fatalities per 
Accident 

The mean number of fatalities per accident can vary hugely depending on the 
characteristics of the system. Therefore, it might be worthwhile finding out how 
to reduce the number of fatalities, which we do by changing some 
characteristics. Suppose that we classify the accidents in r groups, according to 
the characteristics we have determined. Then, c/ is the mean number of fatalities 
per accident given characteristic j , j =1. . . r. Within they group there could be 
other sub-characteristics. Suppose we have r, subgroups within group j . Within 
each group r;- there could be other subgroups, and so on. The mean number of 
fatalities per accident in period t is defined as c,= Y/j^iP-fjt > where pj, 

represents the proportion of a selected characteristic that belong to a group of 
characteristics j in period t and Cjt=Yl^_zjp.,Cjkl, where p-lkl is the proportion of 

the selected characteristic that belong to subgroup jk in period t. cjk, follows the 
same process, and more c can be calculated until there are no more subgroups to 
consider. If there are not more subgroups to consider we propose two possible 
methods to calculate c: 
1. If all data are considered equally significant and reliable, then c; (c;/f) is the 

mean number of fatalities per accident given the selected characteristic in 
group j* (jk) in period t. 

2. Recent data are more representative and significant than the older 
information. With this assumption, Cj(Cjk) is computed as a weighted mean 
of the number of fatalities per accident in group j (jk) in period t. We used 
the rank-order centroid function to weight the values. 

Now, we estimate the mean number of fatalities per accident in broad and 
narrow gauge, denoted by c\ and c2 respectively. We consider three possibilities: 
• c\ and c'2 are the mean number of fatalities per broad and narrow gauge 

accident in the 1992-2009 period (c, = 0.42919708, c2= 0.469178082). 



• Cj and en are the weighted mean number of fatalities per broad and narrow 

gauge accident in the 1992-2009 period. The centroid function was used to 

weight the different years, i.e., recent years are assigned a higher weight 

than years further in the past (c, = 0.692831966, c2= 0.52795136). 

• c\ and c2 are computed in the 2004-2009 period, in which accident 

investigations were more exhaustive {c\ = 1.003676471, c2 = 0.9375). 

The mean number of fatalities per accident, c,, is computed as follows: c, = 

Pi C] + (1- pt) c2, with;?, as the proportion of broad gauge train-kilometers. 

2.3. Phase 3. Prediction of the Mean Number of Fatalities 

The total number of fatalities,/,, in the 2010-2018 period are estimated using the 

following model:/ , = E(y,)c,. The total predicted number of fatalities per 3-year 

period is shown in Table 4.We have noticed broad gauge is safer than narrow 

gauge, and narrow gauge train-kilometers are expected to grow. If we reduce 

their proportion by 1/1000 and take this to be the proportion for broad gauge 

train-kilometers, the results would be as follows, see Table 4. 

Table 4. Prediction of the mean number of fatalities. 

2010-2012 

2013-2015 

2016-2018 

Mean number of fatalities (ft) 

. . Weighted 
Mean 

mean 

53.3 84.4 

47.2 74.8 

42.4 67.1 

Mean for the 
last 6 years 

123.5 

109.4 

98.2 

Mean 

51.3 

45.2 

40.4 

ft applying 

Weighted 
mean 

81.5 

71.8 

64.2 

changes 

Mean for the last 
6 years 
119.2 

104.9 

93.7 

As we can see, the proposed strategy reduces the number of fatalities. With 

the different methods, i.e., weighted mean, mean and mean for last six years, we 

reduce fatalities by a total of 9, 6 and 13 respectively. We consider the last 

method to be the best for the reasons explained above. The final decision has to 

be made by the experts, who are the ones to evaluate whether or not the cost of 

such changes are worth it. 

3. Conclusions 

We have proposed a methodology to predict the mean number of fatalities in 

railway network accidents, based on three phases. The methodology has been 

applied on the Spanish railway system on the basis of annual and grouped data 

for the 1992-2009 time period. In both cases, we made a distinction between 

broad and narrow gauges. 



The proposed methodology could be a starting point for a more complete 
analysis of the Spanish railway network, accounting for other variables apart 
from gauge, since CIAF has conducted fuller investigations in Spain from 2004 
on wards. Variables such as the gauge traffic level, manual or automatic block 
options or centralized traffic control can add meaningful analyses in the future. 
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