721 research outputs found

    Test-retest reliability of structural brain networks from diffusion MRI

    Get PDF
    Structural brain networks constructed from diffusion MRI (dMRI) and tractography have been demonstrated in healthy volunteers and more recently in various disorders affecting brain connectivity. However, few studies have addressed the reproducibility of the resulting networks. We measured the test–retest properties of such networks by varying several factors affecting network construction using ten healthy volunteers who underwent a dMRI protocol at 1.5 T on two separate occasions. Each T1-weighted brain was parcellated into 84 regions-of-interest and network connections were identified using dMRI and two alternative tractography algorithms, two alternative seeding strategies, a white matter waypoint constraint and three alternative network weightings. In each case, four common graph-theoretic measures were obtained. Network properties were assessed both node-wise and per network in terms of the intraclass correlation coefficient (ICC) and by comparing within- and between-subject differences. Our findings suggest that test–retest performance was improved when: 1) seeding from white matter, rather than grey; and 2) using probabilistic tractography with a two-fibre model and sufficient streamlines, rather than deterministic tensor tractography. In terms of network weighting, a measure of streamline density produced better test–retest performance than tract-averaged diffusion anisotropy, although it remains unclear which is a more accurate representation of the underlying connectivity. For the best performing configuration, the global within-subject differences were between 3.2% and 11.9% with ICCs between 0.62 and 0.76. The mean nodal within-subject differences were between 5.2% and 24.2% with mean ICCs between 0.46 and 0.62. For 83.3% (70/84) of nodes, the within-subject differences were smaller than between-subject differences. Overall, these findings suggest that whilst current techniques produce networks capable of characterising the genuine between-subject differences in connectivity, future work must be undertaken to improve network reliability

    Meeting abstract: iMap 4: An Open Source Toolbox for the Statistical Fixation Mapping of Eye Movement data with Linear Mixed Modeling.

    Get PDF
    A major challenge in modern eye movement research is to statistically map where observers are looking at, as well as isolating statistical significant differences between groups and conditions. Compared to signals of contemporary neuroscience measures, such as M/EEG and fMRI, eye movement data are sparse with much larger variations across trials and participants. As a result, the implementation of a conventional Hierarchical Linear Model approach on two-dimensional fixation distributions often returns unstable estimations and underpowered results, leaving this statistical problem unresolved. Here, we tackled this issue by using the statistical framework implemented in diverse state-of-the-art neuroimaging data processing toolboxes: Statistical Parametric Mapping (SPM), Fieldtrip and LIMO EEG. We first estimated the mean individual fixation maps per condition by using trimmean to account for the sparseness and the high variations of fixation data. We then applied a univariate, pixel-wise linear mixed model (LMM) on the smoothed fixation data with each subject as a random effect, which offers the flexibility to code for multiple between- and within- subject comparisons. After this step, our approach allows to perform all the possible linear contrasts for the fixed effects (main effects, interactions, etc.). Importantly, we also introduced a novel spatial cluster test based on bootstrapping to assess the statistical significance of the linear contrasts. Finally, we validated this approach by using both experimental and computer simulation data with a Monte Carlo approach. iMap 4 is a freely available MATLAB open source toolbox for the statistical fixation mapping of eye movement data, with a user-friendly interface providing straightforward, easy to interpret statistical graphical outputs and matching the standards in robust statistical neuroimaging methods. iMap 4 represents a major step in the processing of eye movement fixation data, paving the way to a routine use of robust data-driven analyses in this important field of vision sciences. Meeting abstract presented at VSS 2015

    iMap4: An Open Source Toolbox for the Statistical Fixation Mapping of Eye Movement data with Linear Mixed Modeling.

    Get PDF
    A major challenge in modern eye movement research is to statistically map where observers are looking, by isolating the significant differences between groups and conditions. Compared to signals of contemporary neuroscience measures, such as M/EEG and fMRI, eye movement data are sparser with much larger variations in space across trials and participants. As a result, the implementation of a conventional linear modeling approach on two-dimensional fixation distributions often returns unstable estimations and underpowered results, leaving this statistical problem unresolved (Liversedge, Gilchrist, & Everling. 2011). Here, we present a new version of the iMap toolbox (Caldara and Miellet, 2011) which tackles this issue by implementing a statistical framework comparable to those developped in state-of the- art neuroimaging data processing toolboxes. iMap4 uses univariate, pixel-wise Linear Mixed Models (LMM) on the smoothed fixation data, with the flexibility of coding for multiple between- and within- subject comparisons and performing all the possible linear contrasts for the fixed effects (main effects, interactions, etc.). Importantly, we also introduced novel nonparametric tests based on resampling to assess statistical significance. Finally, we validated this approach by using both experimental and Monte Carlo simulation data. iMap4 is a freely available MATLAB open source toolbox for the statistical fixation mapping of eye movement data, with a user-friendly interface providing straightforward, easy to interpret statistical graphical outputs. iMap4 matches the standards of robust statistical neuroimaging methods and represents an important step in the data-driven processing of eye movement fixation data, an important field of vision sciences

    Adaptive thresholding for reliable topological inference in single subject fMRI analysis

    Get PDF
    Single subject fMRI has proved to be a useful tool for mapping functional areas in clinical procedures such as tumour resection. Using fMRI data, clinicians assess the risk, plan and execute such procedures based on thresholded statistical maps. However, because current thresholding methods were developed mainly in the context of cognitive neuroscience group studies, most single subject fMRI maps are thresholded manually to satisfy specific criteria related to single subject analyses. Here, we propose a new adaptive thresholding method which combines Gamma-Gaussian mixture modelling with topological thresholding to improve cluster delineation. In a series of simulations we show that by adapting to the signal and noise properties, the new method performs well in terms of the trade-off between false negative and positive cluster error rates as well as in terms of over and underestimation of the true activation border. We also show through simulations and a motor test-retest study on ten volunteer subjects that adaptive thresholding improves reliability, mainly by accounting for the global signal variance. This in turn increases the likelihood that the true activation pattern can be determined

    Healthy Aging Delays Scalp EEG Sensitivity to Noise in a Face Discrimination Task

    Get PDF
    We used a single-trial ERP approach to quantify age-related changes in the time-course of noise sensitivity. A total of 62 healthy adults, aged between 19 and 98, performed a non-speeded discrimination task between two faces. Stimulus information was controlled by parametrically manipulating the phase spectrum of these faces. Behavioral 75% correct thresholds increased with age. This result may be explained by lower signal-to-noise ratios in older brains. ERP from each subject were entered into a single-trial general linear regression model to identify variations in neural activity statistically associated with changes in image structure. The fit of the model, indexed by R2, was computed at multiple post-stimulus time points. The time-course of the R2 function showed significantly delayed noise sensitivity in older observers. This age effect is reliable, as demonstrated by test–retest in 24 subjects, and started about 120 ms after stimulus onset. Our analyses suggest also a qualitative change from a young to an older pattern of brain activity at around 47 ± 4 years old

    Parametric study of EEG sensitivity to phase noise during face processing

    Get PDF
    <b>Background: </b> The present paper examines the visual processing speed of complex objects, here faces, by mapping the relationship between object physical properties and single-trial brain responses. Measuring visual processing speed is challenging because uncontrolled physical differences that co-vary with object categories might affect brain measurements, thus biasing our speed estimates. Recently, we demonstrated that early event-related potential (ERP) differences between faces and objects are preserved even when images differ only in phase information, and amplitude spectra are equated across image categories. Here, we use a parametric design to study how early ERP to faces are shaped by phase information. Subjects performed a two-alternative force choice discrimination between two faces (Experiment 1) or textures (two control experiments). All stimuli had the same amplitude spectrum and were presented at 11 phase noise levels, varying from 0% to 100% in 10% increments, using a linear phase interpolation technique. Single-trial ERP data from each subject were analysed using a multiple linear regression model. <b>Results: </b> Our results show that sensitivity to phase noise in faces emerges progressively in a short time window between the P1 and the N170 ERP visual components. The sensitivity to phase noise starts at about 120–130 ms after stimulus onset and continues for another 25–40 ms. This result was robust both within and across subjects. A control experiment using pink noise textures, which had the same second-order statistics as the faces used in Experiment 1, demonstrated that the sensitivity to phase noise observed for faces cannot be explained by the presence of global image structure alone. A second control experiment used wavelet textures that were matched to the face stimuli in terms of second- and higher-order image statistics. Results from this experiment suggest that higher-order statistics of faces are necessary but not sufficient to obtain the sensitivity to phase noise function observed in response to faces. <b>Conclusion: </b> Our results constitute the first quantitative assessment of the time course of phase information processing by the human visual brain. We interpret our results in a framework that focuses on image statistics and single-trial analyses

    The genetics-BIDS extension: Easing the search for genetic data associated with human brain imaging

    Get PDF
    Metadata are what makes databases searchable. Without them, researchers would have difficulty finding data with features they are interested in. Brain imaging genetics is at the intersection of two disciplines, each with dedicated dictionaries and ontologies facilitating data search and analysis. Here, we present the genetics Brain Imaging Data Structure extension, consisting of metadata files for human brain imaging data to which they are linked, and describe succinctly the genomic and transcriptomic data associated with them, which may be in different databases. This extension will facilitate identifying micro-scale molecular features that are linked to macro-scale imaging repositories, facilitating data aggregation across studies

    A protocol for precise comparisons of small vessel disease lesions between ex vivo magnetic resonance imaging and histopathology

    Get PDF
    pp. 310-32La neuroimagen y los estudios clínicos han definido la enfermedad cerebral de los vasos pequeños humanos, pero la fisiopatología sigue siendo relativamente poco comprendida. Para desarrollar terapias eficaces y estrategias preventivas, debemos comprender mejor la heterogeneidad y el desarrollo de la enfermedad de los vasos pequeños a nivel celular.S
    • 

    corecore