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Abstract A major challenge in modern eye movement re-
search is to statistically map where observers are looking, by
isolating the significant differences between groups and con-
ditions. As compared to the signals from contemporary neu-
roscience measures, such as magneto/electroencephalography
and functional magnetic resonance imaging, eye movement
data are sparser, with much larger variations in space across
trials and participants. As a result, the implementation of a
conventional linear modeling approach on two-dimensional
fixation distributions often returns unstable estimations and
underpowered results, leaving this statistical problem unre-
solved (Liversedge, Gilchrist, & Everling, 2011). Here, we
present a new version of the iMap toolbox (Caldara &
Miellet, 2011) that tackles this issue by implementing a statis-
tical framework comparable to those developed in state-of-
the-art neuroimaging data-processing toolboxes. iMap4 uses
univariate, pixel-wise linear mixed models on smoothed fixa-
tion data, with the flexibility of coding for multiple between-
and within-subjects comparisons and performing all possible
linear contrasts for the fixed effects (main effects, interactions,
etc.). Importantly, we also introduced novel nonparametric
tests based on resampling, to assess statistical significance.

Finally, we validated this approach by using both experimen-
tal and Monte Carlo simulation data. iMap4 is a freely avail-
able MATLAB open source toolbox for the statistical fixation
mapping of eye movement data, with a user-friendly interface
providing straightforward, easy-to-interpret statistical graphi-
cal outputs. iMap4 matches the standards of robust statistical
neuroimaging methods and represents an important step in the
data-driven processing of eye movement fixation data, an im-
portant field of vision sciences.
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Human beings constantly move the eyes to sample vi-
sual information of interest from the environment. Eye
fixations deliver inputs with the highest resolution to the
human visual cortex from the fovea, as well as blurry,
low-spatial-frequency information from peripheral vision
(Rayner, 1998). Thus, isolating statistically where and
how long fixations are deployed to process visual infor-
mation is of particular interest to behavioral researchers,
psychologists, and neuroscientists. Moreover, fixation
mapping has a wide range of practical applications in
determining marketing strategies and the understanding
of consumer behaviour (Duchowski, 2002).

Conventional eye movement data analyses rely on the es-
timation of probabilities of occurrence of fixations and sac-
cades (or their characteristics, such as duration or length) with-
in predefined regions of interest (ROIs), which are at best
defined a priori—but often also defined a posteriori, on the
basis of data exploration, which inflates the Type I error rate.
Another issue with ROIs is of course that other important
information not included in the ROI is discarded. In a contin-
uous effort to circumvent the limitations of the ROI approach
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(for a detailed discussion on this point, see Caldara & Miellet,
2011), we previously developed an unbiased, data-driven ap-
proach to compute statistical fixationmaps of eye movements:
the iMap toolbox (Caldara & Miellet, 2011). From the very
first version, the toolbox was developed as a MATLAB open
source toolbox freely available for download online. The pre-
vious versions (1 and 2) made use of Gaussian smoothing and
the random field theory as a statistical engine (Caldara &
Miellet, 2011), which is one of the standard methods applied
in statistical analyses for functional magnetic resonance imag-
ing (fMRI) data (Penny, Friston, Ashburner, Kiebel, &
Nichols, 2011). Version 3 introduced pixel-wise t test and
bootstrap clustering in order to generate self-contained statis-
tical maps (Miellet, Lao, & Caldara, 2014). However, all of
the previous versions of iMap still suffered from a major lim-
itation: They could only contrast two conditions at a time.

A major revision of the toolbox was necessary to enable
the analysis of more complex experimental designs routinely
used in the field. One of the most suitable and obvious
statistical solutions to overcome this problem would be to
implement a general linear model, a widespread approach in
both behavioral and neural-imaging data analyses. In fact,
many modern procedures for hypothesis testing, such as the
t test, analysis of variance (ANOVA), regression, and so
forth, belong to the family of general linear models.
However, eye movement data are a sparse production of
visual perceptual sampling. Unlike neuroimaging data, eye
movement data contain many empty cells with little to no
data points across the tested space (e.g., all of the pixels in
an image). This caveat engenders a statistical problem when
the same statistical inference procedure is applied on each
pixel, regardless or whether or not its data are missing. To
account for the sparseness and the high variation of spatial
eye movement data, we developed a specific novel approach
for smoothed fixation maps, which was inspired by the sta-
tistical framework implemented in diverse state-of-the-art
neuroimaging data-processing toolboxes: statistical paramet-
ric mapping (SPM; Penny et al., 2011), Fieldtrip
(Oostenveld, Fries, Maris, & Schoffelen, 2011), and LIMO
EEG (Pernet, Chauveau, Gaspar, & Rousselet, 2011). In the
simplest case, users can apply a massive univariate, pixel-
wise linear mixed model (LMM) on the smoothed fixation
data with the subject considered as a random effect, which
offers the flexibility to code for multiple between- and
within-subjects comparisons. Our approach allows users to
perform all possible linear contrasts for the fixed effects
(main effects, interactions, etc.) from the resulting model
coefficients and the estimated covariance. Importantly, we
also introduced a novel nonparametric statistical test based
on resampling (permutation and bootstrap spatial clustering)
to assess the statistical significance of the linear contrasts
(Pernet, Latinus, Nichols, & Rousselet, 2015; Winkler,
Ridgway, Webster, Smith, & Nichols, 2014).

In the next section, we briefly describe the key concepts of
the LMM approach. We then introduce the novel nonparamet-
ric statistical approach on the fixed effects that we implemented
in iMap4, which uses a resampling procedure and spatial clus-
tering. We also report a validation of the proposed resampling
procedures, and illustrate how iMap4 can be used, with both a
subset of data from a previous study and computer-simulated
data. Finally, we give an overview of future development and
discuss technical insights on eye fixation mapping.

Linear mixed models

In this part, we outline the key elements and concepts of LMMs
in comparison with general linear models (GLM) and
hierarchical linear models (HLM). Mixed models represent a
complex topic, and the discussion of many underlying
mathematical details goes beyond the scope of this article. For
general, thoughtful introductions to mixed models, users of the
toolbox should refer to Raudenbush and Bryk (2002) and
McCulloch, Searle, and Neuhaus (2011). Users may also wish
to consult the documentation and help files of the
LinearMixedModel class in the MATLAB Statistics Toolbox
for details about parameter estimation and the available methods
(www.mathworks.com/help/stats/linearmixedmodel-class.html).

Statistical hypothesis testing methods that make use of the
analysis of variance (regression, t test, ANOVA, analysis of
covariance, etc.) are themost popular methods of data analysis
inmany fields of research. Commonly used in psychology and
neuroimaging studies, these methods could all be written as
particular cases of GLM:

yi ¼ β1x1i þ β2x2i þ…þ βtxti þ εi;
εi ∼N 0;σ2

� �
;

ð1Þ

where yi is the ith experiment measure and β1, β2 ,…, βt are the
model coefficients. The error term εi is normally distributed
with mean 0 and variance σ2. Alternatively, the GLMs (Eq. 1)
could be expressed in matrix form:

Y ¼ Xβ þ ε;
ε e Ν 0; σ2I

� �
; ð2Þ

where matrix X = [x1, x2,… , xt] is the design matrix, and I is
an n-by-n identity matrix (n being the total number of obser-
vation). Usually, one of the columns in X is 1, so that the
model includes a constant or intercept coefficient that repre-
sents the overall mean. It is worth noting that the designmatrix
could be parameterized in a different way. In conventional
psychology or behavioral researches, a sigma-restricted pa-
rameterization is often applied. In a sigma-restricted design
matrix, X is full rank and invertible, and the degrees of free-
dom are equal to the number of columns. In comparison,
many types of neuroimaging analysis software prefer a cell-
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mean model or an overparameterized design matrix at the
single-subject level (Penny et al., 2011; Pernet et al., 2011).
Such software uses an overparameterized design matrix, and
its solution to Eq. 2 is given by projecting the response vector
Y to the pseudo-inverse of the design matrix X. The form of
the design matrix is important, since it codes different exper-
iment designs and the intended statistical testing. In iMap4,
the design matrix of the fixed effect can be a cell-mean model,
sigma-restricted model (for the Type III ANOVA), or the off-
set from a reference model (for Type I ANOVA).

The coefficient estimations β̂ could be found easily by or-
dinary least squares or other, more robust methods. Finally,
statistical inferences on the model estimations could be
expressed in different forms, depending on the types of design
matrix. In the case of sigma-restricted parameterization, we can
separate the design matrixXsr and the vector of parameters βsr

into two parts (Kherad-Pajouh & Renaud, 2010):

Xsr ¼ X1 X2½ � ;βsr ¼ β1

β2

� �

where X1 and β1 are the components of interest, with the cor-
responding hypotheses:

H0 : β1 ¼ 0 versus H1 : β1 ≠ 0: ð3Þ

Given the Gaussian distribution of the error ε and the ex-
istence of the inverse or general inverse of design matrix Xsr,
we can get the statistics for the F test by means of ANOVA
with the following equations (for simplicity, in Eqs. 4–8 we
denote X = Xsr):

H ¼ X XTX
� �‐

XT ð4Þ
Xresid ¼ I‐X2 XT

2X2

� �‐
XT

2

� �
X1 ð5Þ

Hresid ¼ Xresid XT
residXresid

� �‐
XT

resid ð6Þ
dfe ¼ Number of observations−rank Xð Þ ð7Þ

F ¼ YT Hresid Y=rank X1ð Þ
YT I − Hð Þ Y = dfeð Þ ; ð8Þ

whereH represents the hat matrix of the linear model in Eq. 2;
it projects the response vector Y onto the column space of X.
Hresid is the hat matrix of the hypothesis in Eq. 3, and dfe is the
model’s degrees of freedom. F has a Fisher–Snedecor distri-
bution F rankð X1ð Þ ; dfeÞ.

As a comparison, in an overparameterized design matrix or
cell-mean model design matrix with design matrixXcm and the

vector of parameters βcm, the statistics of various effects are
performed by linear combinations of the coefficient βcm. For
example, the equivalent Hypothesis (3) could be expressed as:

H0 : c*βcm ¼ 0 versus H1 : c*βcm ≠ 0; ð9Þ
where rank(c) = rank(X1) and c*βcm= β1 in the sigma-
restricted parameterization model. The related F test is then
given by the quartic form of the linear contrast matrix c and
the inverse of the covariant matrix of βcm (for simplicity, in
Eqs. 10 and 11 we denote X = Xcm):

MSE ¼ YT I − Hð Þ Y= dfeð Þ ð10Þ

F ¼ c*βcmð ÞT MSE*c XTX
� �−

cT
� �−

c*βcmð Þ
rank cð Þ ; ð11Þ

whereH and dfe are computed using Eqs. 4 and 7, respective-
ly. Moreover, it could be proved that Eqs. 8 and 11 are equiv-
alent. The related details and mathematical proofs could be
found in many textbooks (e.g., Christensen, 2011).

The GLM Y=Xβ+ε could be easily extended into a gen-
eralized form with ε ~ Ν(0, σ2V) where V is some known
positive definite matrix. Moreover, if a more specific structure
of the error ε is available, the GLM (Eq. 2), which has one
random-effect term (the error ε), could be further extended into
a mixed model. Mixed models include additional random-
effect terms that can represent the clusters or classes. In a typ-
ical neuroimaging study, this could be the subjects or groups. In
the following example, we consider a simplified case in which
only the subject is considered as the additional random effect.
This type of model is one of the most widely used models in
both fMRI and electroencephalography (EEG).

As a demonstration, here we consider a random intercept
and slope model, with both the intercept (i.e., the overall mean
of each subject) and the slope (i.e., the differences among
conditions within each subject) varying independently. This
type of HLM, or so-called two-level linear model, takes the
form of an expansion of Eq. 1 into:

yi j ¼ β1 jx1i j þ β2 jx2i j þ…þ βt jxti j þ εi j; εi j e Ν 0; σ2
� �

β1 j ¼ β10 þ b1 j ; b1 j e Ν 0; σ21
� �

⋮
βt j ¼ βt0 þ bt j ; bt j e Ν 0; σ2t

� �
;

ð12Þ
where j stands for the jth subject. After substituting the subject-
level parameters in the first-level model, Eq. 12 becomes
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If we express the subject-level predictor xtij in the random
effects by the term ztij, we get the LMM

which corresponds to the standard form of LMMs:

Y ¼ Xβ þ Zbþ ε ð13Þ

b ~ Ν(0, σ2D), ε ~ Ν(0, σ2I), b and ε are independent from
each other,where σ2D is the covariance matrix for the random
effects. In the example here, D would be a j-by-j identity
matrix. An alternative form of Eq. 12, as applied in LIMO
EEG or SPM, can be found in Friston, Stephan, Lund,
Morcom, and Kiebel (2005, Eq. 1).

HLMs are specific cases of LMMs. In a mixed model,
factors are not necessarily hierarchical. Moreover, crossed fac-
tors between fixed effects and random effects are much easier
to model in mixed than in hierarchical models. In additions,
the fixed effects and random effects are estimated simulta-
neously in mixed models, which is not always the case in
hierarchical models.

Parameter estimation in mixed models is much more com-
plicated than in GLM or HLM. Assuming that the model in
Eq. 13 has the error covariance matrix R: var Yjbð Þ ¼ R, this
model is equivalent to yeN Xβ; Vð Þ ; V ¼ ZDZT þ R. The
estimation of the fixed effects β requires prior knowledge ofV,
which is usually unavailable. In practice, the variance compo-

nentV is commonly replaced by an estimation V̂ based on one
of several approaches, such as ANOVA, maximum likelihood
(ML) estimation, restricted maximum likelihood (ReML) es-
timation, or Monte Carlo approximation (McCulloch, Searle,
& Neuhaus, 2011; Pinheiro & Bates, 2000). In general, the
model-fitting procedure of LMM is implemented in major
statistical packages (e.g., R and Stata) by solving
Henderson’s mixed model equation. iMap4 calls the
MATLAB class LinearMixedModel from Statistics Toolbox
(versions R2013b or above) to estimate the coefficients (fixed
effect β and random effect b) and the covariance matrix V
with various options (key concepts with regard to parameter
estimations can be found in the MATLAB documentation:
www.mathworks.com/help/stats/estimating-parameters-in-
linear-mixed-effects-models.html). In brief, model
coefficients are estimated by ML or ReML, and the pattern
of the covariance matrix of the random effects (D) could take
the form of a full covariance matrix, a diagonal covariance
matrix, or other symmetry structure.

Statistical inferences in LMM are also muchmore complex
than in a GLM. In a balanced design, or with the variance
component V known, hypothesis testing of the fixed effect

follows Eq. 8 or 11 as an exact test. However, in an unbal-
anced design with random effects, no exact F statistics are
available, since biases in the estimation usually result in an
unknown distribution of F (Kherad-Pajouh & Renaud, 2015).
Although F and t values are available as approximate tests in
most statistical packages, Baayen, Davidson, and Bates
(2008) discouraged the usage of t orF statistics, and especially
report of the p value, in mixed models. Other approaches have
also been proposed. For example, likelihood ratio tests could
be performed to test composite hypotheses by comparing the
desired model with the reduced model. However, there are
many constraints on the application of likelihood ratio tests
(e.g., the method of model fitting and selection of the reduced
model). Moreover, running multiple copies of similar LMMs
is computationally expensive, especially in the context of
pixel-wise testing, such as in iMap4.

Besides the practical problem of statistical inferences with
LMM, another main challenge in the application of LMM to
spatial eye movement data is the Type I error from multiple
comparisons. To resolve these issues, we adopted resampling
techniques for null-hypothesis statistical testing, as is sug-
gested in neuroimaging analysis with GLM or HLM (Pernet
et al., 2015; Winkler et al., 2014). Nonparametric statistics
using Monte Carlo simulation are ideal for both parameter
estimation and hypothesis testing (Baayen et al., 2008;
Kherad-Pajouh & Renaud, 2015). In iMap4, we adapted a
simplified version of the permutation test suggested by
Winkler et al. (2014) and a bootstrap clustering method sim-
ilar to the one applied in LIMO EEG (Pernet et al., 2011).
Details of the proposed algorithm and preliminary validation
result are described in the following section.

Pixel-wise modeling and spatial clustering

Although the generation mechanism of eye movement data is
still largely under debate, recent theories and applications
suggest that a spatial model is the most appropriate to
consider the statistical analysis of fixations, especially their
location distribution. For example, Barthelmé, Trukenbrod,
Engbert, andWichmann (2013) recommended using the point
process framework to infer how fixations are distributed in
space. Although we endorse this fruitful approach and its
Bayesian nature, here we aimed to resolve this problem from
the opposite perspective. Instead of inferring from the spatial
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distribution of the fixations, we inferred on each location in
the search space (i.e., each pixel within the eyetracker’s re-
cordable range or each pixel in the visible stimuli). In other
words, we addressed the question: BHow long is this pixel
being fixated (or what is the probability of this pixel being
fixated) in the function of the experimental conditions?^, by
formally applying mixed models independently on each pixel,
we have

Y sð Þ ¼ Xβ sð Þ þ Zb sð Þ þ ε sð Þ ð14Þ

For s ∈ D of the search space.
The complete procedure as implemented in iMap4 is ex-

plained in Fig. 1. The eye movement data for each participant
are concatenated into one input data matrix. iMap4 first parti-
tions the data matrix into a fixation characteristic matrix (red
box) and an experiment condition information matrix (green

box). The fixation characteristic matrix contains a fixation’s
spatial location (x and y), the fixation duration, and an order
index of each fixation. The experiment condition matrix con-
tains an index of each subject, an index of each trial/item, and
the different levels of each experimental condition. Fixation
durations are then projected into the two-dimensional space
according to their x- and y-coordinates at the single-trial level.
iMap4 then smooths the fixation duration map by convoluting
it with a two-dimension Gaussian kernel function:

Kernel ∼N 0;σ2I
� �

;

where I is a two-by-two identity matrix and the full width at
half maximum (FWHM) of the kernel is 1° of visual angle as
the default setting.

This step is essential to account for the spatial uncertainty
of eye movement recordings (both mechanical and

Fig. 1 Illustration of the basic processing steps implemented in
iMap4. The input data matrix is partitioned into an eye movement
matrix and predictor matrix. Fixation durations are projected into the
two-dimensional space according to their x- and y-coordinates at the
single-trial level for each participant. The experimental information of
each trial is also summarized in a predictor table. Subsequently, the sparse
representation of the fixation duration map is smoothed by convoluting it
with a two-dimensional Gaussian kernel function, kerneleΝ 0 ; σ2Ιð Þ.

After estimating the fixation bias of each condition independently for
all observers (by taking the expected values across trials within the same
condition), iMap4 models the 3-D smoothed fixation map
(item*xSize*ySize) independently for each pixel using an LMM. The
result is saved as a MATLAB structure in LMMmap. iMap4 offers many
parametric and nonparametric methods for hypothesis testing and
multiple-comparison correction
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physiological) and the sparseness of the fixation locations.
The Gaussian kernel could also be replaced by other 2-D
spatial filters to best suit the research question.

The resulting smoothed fixation map is a 3-D matrix. The
last two dimensions of the fixation matrix are the sizes of the
stimuli or search space. The information of each entry in the
first dimension is stored in a predictor table, which is gener-
ated from the experiment condition matrix. Each experiment
condition can be coded at the single-trial level in the predictor
table, or as one entry by taking the average map across trials.

In addition, iMap4 provides a robust estimation option by
applying Winsorization in order to limit extreme values in the
smoothed fixation matrix. The goal here is to reduce the effect
of any potential outliers. Additional options include: spatial
normalization (z-scored map or probability map), spatial
down-sampling (linear transformation using imresize in
MATLAB) to optimize computing speed, and mask creation
to exclude irrelevant pixels.

The resulting 3-D fixation matrix is then modeled in a LMM
as the response variable. The results are saved as a MATLAB
structure (LMMmap, as in the examples below). The fields of
LMMmap are nearly identical to the output from the
LinearMixedModel class. For each modeled pixel, iMap4 saves
the model criterion, variances explained, error sum of squares,
coefficient estimates, and their covariance matrix for both fixed
and random effects, and the ANOVA results for the LMM.
Additional modeling specifications, as well as other model pa-
rameters, including the LMM’s formula, design matrix for fixed
and random effect, and residual degrees of freedom, are also
saved in LMMmap. Linear contrasts and other analyses based
on variance or covariance can be performed afterward from the
model-fitting information. Any other computation on the
LinearMixedModel output can also be replicated with LMMmap.

One of the crucial assumptions of pixel-wise modeling is
that all pixels are independent and identically distributed. Of
course, this assumption is never satisfied, neither before nor
after smoothing. To ensure valid inferences on activity pat-
terns in a large 2-D pixel space, we applied nonparametric
statistics to resolve the biases in parameter estimation and
problems arising from multiple comparisons. We developed
two resampling-based statistical hypothesis-testing methods
for the fixed-effect coefficients: a universal permutation test
and a universal bootstrap clustering test.

The resampling tests on the model coefficient for fixed
effects β operate on the fixed-effect-related variances. To do
so, we simply removed the variance associated with the ran-
dom effects from the response matrix:

Yfixed sð Þ ¼ Xβ sð Þ þ ε sð Þ ¼ Y sð Þ−Zb sð Þ; ð15Þ

For s ∈ D of the search space.
For any permutation test, iMap4 performs the following

algorithms on Yfixed for each pixel.

Algorithm 1

For a given hypothesis or linear contrast c (as in Eq. 9), iMap4

– Performs a linear transformation on the design matrix X
to get a new design matrix M so that the partitioning of
M= [M1, M2]. Then iMap4 computes the new coeffi-
cients by projecting Yfixed to the pseudo-inverse of M.
The design matrix M is created so that the original hy-
pothesis testing is equivalent to the hypothesis regarding
the M1 coefficients. The matrix transformation and par-
tition are the same as the algorithm described in Winkler
et al. (2014, Appx. A).

– Computes the residuals related to the hypothesis by
subtracting the variance accounted for by M2 from
Yfixed, to get Yrr.

– Fits Yrr to M by solving Yrr=Mβm+ε, and gets the
statistical value Frr of M1 according to Eqs. 10 and 11.
Note that to replicate the original hypothesis testing on
the fixed effect, the new contrast c’ is just used to partition
M intoM1 and M2.

– Permutes the rows of the design matrix M to obtain the
new design matrixM*.

– Fits Yrr to M* and gets the Frr* ofM1*.
– Repeats the previous two steps a large number of times (k

resamplings/repetitions), and the p value is then defined
as in Eq. 16. Importantly, the family-wise error rate
(FWER) corrected p value is computed by comparing
the largest Frr* across all tested pixels in one resampling
with the original Frr:

p ¼ # Frr
*≥ Frr

� �
k

: ð16Þ

Algorithm 1 is a simplified version of Winkler et al. (2014,
Algorithm 1): The resampling table includes permutation but
not sign-flipping, which assumes the errors to be independent
and symmetric. Thus, the underlying assumptions are stronger
than with classical permutations, which require only ex-
changeable errors (Winkler et al., 2014).

Importantly, this test is exact only under a balanced design
with no missing values and only subjects as a random effect.
As was previously shown in Kherad-Pajouh and Renaud
(2015), a general and exact permutation approach for mixed-
model designs should be performed onmodified residuals that
have up to second-moment exchangeability. This is done to
satisfy the important assumptions for repeated measures
ANOVA: normality and the sphericity of errors. However,
there are strict requirements to achieve this goal: careful trans-
formation and partition of both the fixed- and random-effects
design matrices, and removal of the random effects related to
M2 (Kherad-Pajouh & Renaud, 2015). In iMap4, we perform
an approximation version by removing all random effects to
increase the efficiency and speed of the huge amount of
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resampling computation in our pixel-wise modeling algo-
rithm. Validation and simulation data set indeed showed that
the sensitivity and the false alarm rate of the proposed algo-
rithm were not compromised.

Algorithm 2

iMap4 performs the following algorithm on Yfixed for each
pixel as the bootstrap clustering approach.

– For each unique categorical variable, iMap4 removes the
conditional expectations from Yfixed for each pixel. A
random shuffling is then performed on the centered data
to acquire Yc, so that any potential covariance is also
disrupted. This is done to construct the true empirical
null-hypothesis distribution in which all elements and
their linear combinations in Yc have expected values
equal to 0.

– Randomly drawswith replacement from {X,Z,Yc} equal
numbers of subjects {X*, Z*, Yc*}.

– Fits Yc* to X* by solving Yc*=X*β*+ε. For a given
hypothesis or linear contrast c (as in Eq. 9), iMap4 com-
putes the statistics value F* according to Eqs. 10 and 11,
and their parametric p value under the GLM framework.

– Thresholds the statistical maps F* at p*≤.05 and records
the desired maximum cluster characteristics across all
significant clusters. The cluster characteristics considered
are cluster mass (summed F value within a cluster), clus-
ter extent (size of the cluster), and cluster density (mean F
value).

– The previous three steps are repeated a large number of
times, to get the cluster characteristic distribution under
the null hypothesis.

– Thresholds the original statistical map F at p≤ :05 and
compares the selected cluster characteristic with the value
of the null distribution corresponding to the 95th percen-
tile. Any cluster with the chosen characteristic larger than
this threshold is considered significant.

The bootstrap clustering approach is identical to the boot-
strap procedure described by Pernet et al. (2011; Pernet et al.,
2015) if only a subject intercept is considered as the random
effect. In addition, Algorithm 2 extents the philosophy and
approach presented by Pernet et al. (2011; Pernet et al.,
2015) to nonhierarchical mixed-effect models.

It is worth noting that we implemented in iMap4 a high-
performance algorithm to minimize the computational de-
mands of the large amount of resampling. The model fitting
in both resampling approaches makes use of ordinary least
squares. The inversion of the covariance matrices (required
for Eq. 11) is computed on the upper triangular factor of the
Cholesky decomposition. Calculation of the quartic form (as
in Eq. 11) for all pixels is optimized by constructing a sparse

matrix of the inverse of the covariance matrix. More details of
these algrebraic simplifications can be found in the
imapLMMresample function in iMap4.

Other multiple-comparison correction methods, such as
Bonferroni correction, false discovery rate, or random field
theory (RFT), could also be applied. A threshold-free cluster
enhancement algorithm could also be applied on the statistical
(F-value) maps as an option after the permutation and boot-
strap clustering procedures (Smith & Nichols, 2009).

We performed a validation study to assess the Type I error
rate when applying the permutation and bootstrap clustering
approach for hypothesis testing. We used a balanced repeated
measures ANOVA design with a two-level between-group
factor and a three-level within-group factor. A total population
of 134 observers (67 in each group) was drawn from previous
face-viewing eye movement studies. We centered the cell
means for the whole dataset to obtain the validation dataset
under the null hypothesis (similar to Step 1 in Algorithm 2).
Thus, we used real data to warrant realistic distributions and
centered them to ensure that H0 was confirmed. Any signifi-
cant output from iMap4 performed on this dataset would be
considered as a false alarm (Type I error).

The validation procedure followed the steps below: We
first randomly sampled without replacement a balanced num-
ber of subjects from both groups.We then ran iMap4 under the
default settings and performed hypothesis testing on the two
main effects and the interaction. To estimate the FWER, we
computed the frequency of significant output under different
statistics and MCC settings. Preliminary results based on 1,
000 randomizations with a sample size of n ∈ [8, 16, 32, 64]
showed that with an alpha of .05, the FWERs were indeed all
under. 05 using nonparametric statistics (see Fig. 2b for the
permutation test, and Fig. 2c and d for the bootstrap clustering
test). More simulations considering a wider range of scenarios
will be required to understand fully the behavior of the pro-
posed approaches, although the cluster stats are likely to be-
have as in Pernet et al. (2015).

Graphical user interface (GUI) and command line
handling

iMap4 runs on MATLAB 2013b and above, since it requires
some essential functions and classes from the Image
Processing Toolbox and Statistics Toolbox in these versions.
iMap4 will execute in parallel on multicores or distributed
workers, when available.

We recommend that users install iMap4 as a MATLAB
application. The users can call iMap4 directly in the
MATLAB command window after installation. A general
GUI will open upon >>iMAP, called in the command window
or when launching the app (Fig. 3a). The users can then import
the fixation data, load a preprocessed data matrix for LMM, or
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display the modeling results and perform statistical hypothesis
testing. These main steps have their own independent GUIs:
Create Fixation Matrix (Fig. 3b), Linear Mixed Model
(Fig. 3c), and Display Results (Fig. 3d). Although most fea-
tures of iMap4 could be obtained via these GUIs, we encour-
age advanced users to use command lines, especially for the
additional options specification of the LinearMixedModel
class. A short example of the command-line handling of the
main functions is shown in Fig. 3e. A user guidebook contain-
ing the instructions for each step can be accessed via the Help
button. We have also provided datasets with tutorial files to
explain practically how to use iMap4. As a demonstration,
two examples based on real and simulation data are given in
the next section. MATLAB scripts of the examples are part of
the iMap4 installation package.

Applications to real and simulation data

In the following examples, we illustrate iMap4’s flexibility
and power with two real data sets and a computer simulation.
All material and codes presented here are available in the
iMap4 installation package.

Example 1

We consider first a subset of participants from Bovet, Lao,
Bartholomée, Caldara, &Raymond, (2016), as a demonstration

.2

.1

8 16 32 64

.05

8 16 32 64

.05

8 16 32 64

.05

8 16 32 64

a) b)

c) d)

FW
ER

Number of Subjects
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Interaction

Fig. 2 Validation results of the proposed resampling procedure for
statistical inference. (a) Family-wise error rates (FWERs) using the
uncorrected parametric p values. All FWERs are significantly above
.05. (b) FWERs using the permutation approach (Algorithm 1). (c)
FWERs using the proposed bootstrap-clustering approach (Algorithm
2) thresholds on cluster mass. (d) FWERs using the proposed

bootstrap-clustering approach (Algorithm 2) thresholds on cluster
extent. Notice that the FWERs of panels a and b are computed at the
pixel level (i.e., the proportions of false-positive pixels across
simulations), and the FWERs of panels c and d are calculated at the test
level (i.e., the percentages of any false positives per test for the 1,000
simulations). Error bar shows the standard errors

�Fig. 3 The main graphical user interfaces of iMap4 (a–d) and example
command lines handling the core functions (e). For more details, please
refer to the online guidebook and demonstration codes
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of the analysis procedure in iMap4. A step-by-step demonstra-
tion is available in the user guidebook and example code.

In short, the dataset consists of eye movement data from 20
male observers during a gaze-contingent study. Observers
viewed computer-rendered female bodies in different condi-
tions and performed a behavioral task (i.e., subjective ratings
of bodily attractiveness). This was a within-subjects design
with two experimental manipulations: the viewing condition
(three levels: 2° spotlight, 4° spotlight, or natural viewing) and
body orientation (two levels: front view or back view). The
aim of the study was to evaluate the use of visual information
for bodily attractiveness evaluation in the male observers.
Other details of the experiment can be found in the article.

Fixation durations were projected into the two-dimensional
space according to their coordinates at the single-trial level.
The fixation duration maps were first smoothed at 1° of visual
angle. We used the Bestimated^ option by taking the expected
values across trials within the same condition independently
for each observer. To reduce the computation time, we down-
sampled the fixation map to 256*205 pixels and applied a
mask to only model the pixels with average durations longer
than half of the minimum fixation duration input.

Before proceeding to the modeling step, we visualized the
preprocessed fixation maps and the descriptive statistics to get
a sense of the data. For each of the categorical conditions,
iMap4 outputs the mean fixation map for each level.
Descriptive statistics for the following eye movement mea-
sures are saved in a matrix and will be plotted in a histogram
or boxplot: number of fixations, sum of fixation durations

(total viewing time), mean fixation duration, total path length
(total eye movement distance in pixels), and mean path length.
See Fig. 4 for an example of the descriptive-results output.

We applied a full model on the fixation duration map with-
out any spatial normalization:

PixelIntensity x; yð Þe Viewing condition þ Body orientation

þ Viewing condition* Body orientation

þ fixation duration subjectjð Þ; x; y ∈ fixation map resolution:

Notice that the mean fixation duration for each condition
and subject were treated as random effects to control for the
variation across individuals. The parameters were fitted with
restricted maximum likelihood estimation (ReML).

We encourage users to interpret the result from iMap4 in
the following way. First, check the model fitting by displaying
the model criteria. For example, Fig. 5a shows the R2 values or
multiple-correlation coefficients, which represent the propor-
tions of variability in the fixation matrix explained by the
fitted model. Interpretation of the result should be drawn with
caution if the R2 values are too low. The users can then pro-
ceed to test their hypotheses, such as through ANOVA or
linear contrast, and perform multiple-comparisons corrections
(Fig. 5b and c). A post-hoc analysis is applicable if any inter-
action is presented, or if any condition contains multiple
levels. The user can select one or more significant area(s) as
data-driven ROI(s) for the post-hoc analysis. iMap4 performs
t tests between any pairs of categorical conditions within this
ROI by using the raw input values from the nonsmoothed
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Fig. 4 Descriptive results from iMap4 on the real dataset. (a) Five eye movement measures plotted in histograms. In this case, fixation durations are in
milliseconds and path lengths are in pixels. (b) Mean fixation maps of all levels of the categorical conditions
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Fig. 5 iMap4 results for Bovet et al. (2016) with different output styles.
(a) Ordinary R2 values for the fitted model. (b) ANOVA results of the
main effects and interaction. Here the intensity represents the F values.
iMap4 only displays significant maps. (c) Statistical results of the linear
contrast [2° spotlight–natural viewing] in the back view condition. Here
the F value is represented on a contour map. (d) Post-hoc analysis in the
selected mask. The mask is generated from the significant region of the

body orientation effect (left panel). The t test results are shown in the
matrix in the right panel (labeled conditions on the y-axis minus those
labeled on the x-axis). Only significant results are shown (p < .05,
Bonferroni corrected). (e) One-tailed t tests against the average over all
fixation intensities for the 2° spotlight front view and 2° spotlight back
view conditions. The solid black lines contain the significant regions for
all of the panels above
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fixation matrix (Fig. 5d). In addition, users can compute the
above-average or above-chance fixation intensity for each cat-
egorical predictor (Fig. 5e).

Example 2

As a second demonstration, we reanalyzed the full dataset
from one of our previous studies, Miellet, He, Zhou, Lao,
and Caldara (2012).

Previous studies testing Western Caucasian (WC) and East
Asian (EA) observers had shown that people deploy different
eye movement strategies during free viewing of faces. WC
observers fixate systematically toward the eyes and mouth,
following a triangular pattern, whereas EA observers predom-
inantly fixated at the center of the face (Blais, Jack, Scheepers,
Fiset, & Caldara, 2008; Caldara, Zhou, & Miellet, 2010).
Moreover, human observers can flexibly adjust their eye
movement strategies to adapt to environmental constraints,
as has been shown using different gaze-contingent paradigms
(Caldara, Zhou, & Miellet, 2010; Miellet et al., 2012). In our
2012 study, we tested two groups of observers in a face task in
which their foveal vision was restricted by a blind spot. This
was a mixed design with the culture of the observers as the
between-subjects factor (WCs or EAs) and the blind spot size
as the within-subjects factor (four level: natural viewing, 2°
blindspot, 5° blindspot, or 8° blindspot). For more details of
the experiment, please refer to Miellet et al. (2012).

Using iMap4, we created the single-trial 2-D fixation dura-
tion map and smoothed at 1° of visual angle. Importantly, to
keep in line with Miellet et al. (2012), spatial normalization
was performed by z-scoring the fixation map across all pixels
independently for each trial (the results are identical without
spatial normalization in this example). We also applied a mask
generated with the default option. No down-sampling was
performed. We then applied a full model on the single-trial
fixation durationmapmade used of the Bsingle-trial^ option in
iMap4:

PixelIntensity x; yð Þe Observer cultureþ Blindspot size

þ Observer culture*Blindspot size

þ 1 subjectjð Þ; x; y ∈ fixation map resolution:

Only the subject predictor was treated as a random effect,
and the model was fitted using ML.

After model fitting, we performed an ANOVA to test the
two main effects and their interactions. We applied a bootstrap
clustering test using a cluster density of 1,000 as the criterion.
We found a significant interaction and a main effect of blind
spot size, but not a main effect of culture (see Fig. 6a). This
result replicates the findings in Miellet et al. (2012).
Moreover, by performing a linear contrast of the model coef-
ficients, we reproduced Fig. 2 from Miellet et al. (2012). The
results using iMap4 are shown in Fig. 6b.

Example 3

We also used simulated data to illustrate the use of iMap4with
continuous predictor. We created a dataset and manually in-
troduced an effect between the numbers of fixations and the
subjective rating on a single-trial level. Moreover, to maxi-
mize the simulation’s efficiency, different linear relationships
were introduced simultaneously. For each subject, we gener-
ated a data matrix through the two following steps:

– In a 4*4 grid, we introduced a different linear relationship
in each cell between fixation number and subjective rat-
ing. Figure 7a shows the linear relationships we intro-
duced for one subject. We varied the slope and the
strength of the linear association. The correlation was
strongest on the top row (r = .9), and there was no corre-
lation on the bottom row (r = 0). The slope varied among
[1, 0.4, –0.2, –0.8] across the columns. Note that each dot
on a scatterplot represents one trial, and the dots with the
same rating (value on the x-axis) across subplots belong
to the same trial. The resulting matrices after this step
were a one-dimensional array Rating and a two-
dimensional matrix P (matrix size: 16 * number of trials)

– The spatial locations of fixations were generated using
linear Gaussian random fields. For each trial, we created
a Gaussian mixture model gm using the gmdistribution
class in MATLAB. The Gaussian mixture model gm con-
tains 16 (4*4) 2-D Gaussian distribution components.
The center of each component aligned with the center of
each grid, and the covariance was an identity matrix with
1° of visual angle on the diagonal. Crucially, the mixing
proportion of each component was decided by the column
of the specific trial in P. A number of random fixations
were then generated from this Gaussian mixture model
gm. See Fig. 7b for a realization of one random trial for
one subject.

The dataset contained 20 subjects performing 100 trials,
each with an average fixation number of 58.02. Figure 7c
shows the average map for fixation numbers. We fitted a sim-
ple model with ReML:

Pixel Intensity x; yð Þ e 1þ Rating

þ 1 subjectjð Þ; x; y∈screen resolution:

The significant regression coefficients of Rating are shown in
Fig. 7d. iMap4 accurately rejected the null hypothesis for most
conditionswhen therewas a significant relationship. For themost
robust effect (r = .9), iMap4 accurately estimated the coefficients.
It also correctly reported a null result for r = 0. Moreover, iMap4
did not report any significant effect for the weakest relationship
(slope = –0.2, r = .3), due to the lack of power. Indeed, further
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simulations showed that increasing the numbers of fixations,
trials, or subjects would lead to significance.

Discussion and future developments

In the present article, we have reported a major update of iMap,
a toolbox for statistical fixationmapping of eyemovement data.

While keeping unchanged the general data-driven philosophy
of iMap, we significantly improved the underlying statistical
engine, by incorporating pixel-wise LMMs and a variety of
robust nonparametric statistics. Crucially, the new analysis
pipeline allows for the testing of complex designs while con-
trolling for a wide range of random factors.We also implement-
ed a full GUI to make this approach more accessible to
MATLAB beginners. Examples from empirical and
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Fig. 6 iMap4 results for Miellet et al. (2012). (a) ANOVA results of the linear mixed model. (b) Replication of the Fig. 2 results for Miellet et al. (2012),
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computer-simulated datasets showed that this approach has a
slightly conservative FWER under H0, while remaining highly
sensitive to actual effects (e.g., Fig. 6d). The present method
represents a significant advance in eye movement data analysis,
particularly for analyzing experimental designs using normal-
ized visual stimuli. In fact, iMap4 uses a statistical inference
method similar to those in fMRI andmagnetoencephalography/
EEG analysis. The interpretation of the statistical maps is sim-
ply done by looking at which stimulus features/pixels relate to
the significant areas (after multiple-comparison correction).
This procedure is similar to the interpretation of fMRI results:
after a significant region is revealed, we can use its spatial
coordinates to check in which part of the cortex the region
activated above chance level is located.

As a powerful statistical tool, LMMs are gaining popularity
in psychological research and have previously been applied in
eyemovement studies (e.g., Kliegl, Masson, &Richter, 2010).
Similarly, particular cases of LMM, such as HLMor two-level
models, are now standard data-processing approaches in neu-
roimaging studies. As a general version of HLMs, LMMs are
much more flexible and powerful than other multilevel
models. Most importantly, an exact same LMM could be ap-
plied to behavior, eye movement, and neuroimaging data,
bridging these different measures to allow drawing more di-
rect and complete conclusions.

However, there are both theoretical and practical chal-
lenges in using LMM for the statistical spatial mapping of
fixation data. First, the fixation locations are too sparse to
directly apply pixel-wise modeling. Similarly to previous ver-
sions of iMap, we used spatial smoothing of the fixation loca-
tions, a preprocessing step necessary to account for the mea-
surement error of eyetrackers and the imprecision of the phys-
iological system (i.e., the human eye). The second issue is
selecting the appropriate hypothesis testing for LMM and
the multiple-comparison problems caused by modeling mas-
sive number of pixels in nonbalanced designs. We addressed
this issue by applying nonparametric statistics based on re-
sampling and spatial clustering. Another important challenge
is the constraint of computational resources. Parameter esti-
mations using LMM, the pixel-wise modeling approach, and
resampling techniques are very computationally demanding
and time-consuming. To produce a useful but also usable tool,
we adapted many advanced and novel algorithms, such as
parallel computing. Preprocessing options such as down-
sampling and applying a mask also significantly decrease
the computational time of iMap4.

The comparison among ROIs/areas of interest, iMap 2.0,
and the current version

In classical eye movement data analyses, particularly those con-
sidering fixation locations, themain challenge for statstially iden-
tifying the regions that have been fixated above chance level lies

in the fact that we are facing a high-dimensional data space.
Mathematically, each pixel represents one dimension that could
be potentially important. However, it is trivial to say that many of
these dimensions are redundant and could be reduced to a par-
ticular set of representations or features. In other words, eye
fixation data points are embedded in a high-dimensional pixel
space, but they actually occupy only a subspacewithmuch lower
dimensionality (Belkin&Niyogi, 2003). Indeed, in similar high-
dimensional datasets, a low-dimensional structure is often as-
sumed and is naturally the main focus for investigation. Thus,
by arbitrarily choosing one or multiple ROIs, one can represent
the high-dimensional dataset as a low-dimensional manifold.
The fixation map thus projects into this manifold, and all the
pixels within the same ROI are then considered as being in the
same dimension. In this case, each ROI represents one feature.
Such a method is comparable to early neural network and many
other linear dimension reduction methods in the machine-
learning literature with hand-coded features (LeCun, Haffner,
Bottou, & Bengio, 1999; Sorzano, Vargas, & Montano, 2014).

The early versions of iMap (1 and 2) adopted a similar
logic, but relied on RFT to isolate data-driven features.
Therefore, the fixation bias in each pixel was projected into
a lower-dimensional subspace, resulting in fixation clusters.
Second-level statistics were then computed at the cluster level
instead of the pixel level to perform statistical inference
(Miellet, Lao, & Caldara, 2014).

From iMap 3 onward, we took a very different approach.
We used spatial clustering and multiple-comparison correc-
tion to avoid the use of second-level statistics to perform sta-
tistical inference. In iMap4, the fixation bias is similarly
modeled on each pixel using a flexible yet powerful statistical
model: the LMM. The LMM, in combination with nonpara-
metric statistics and a spatial clustering algorithm, directly
isolates the significant pixels. As a result, the iMap4 outputs
can be interpreted intuitively and straightforwardly at the map
level (i.e., by visualizing the areas reaching significance from
the tested hypothesis).

Parameter settings and statistical choices

Our aim was and still is the development of a data-driven and
fully automatized analysis tool. However, even in iMap4

�Fig. 7 iMap4 results on the simulation dataset. (a) Linear relationships
being introduced into the 4*4 grid. The x-axis shows the z-scored rating,
and the y-axis shows the expected number of fixations. The slopes
between y and x are the same within each column ([1, 0.4, –0.2, –0.8],
respectively), whereas the correlation rho is the same within each row
([0.9, 0.6, 0.3, 0], respectively). (b) One realization of a random trial for
one subject. The left panel shows the raw fixation locations; the right
panel shows the smoothed fixation number map. (c) The average
fixation map across all trials for the 20 subjects. (d) Estimated
relationships between rating and fixation number (regression
coefficients). The black circles indicate statistical significance
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some of the parameters in the analysis rely on a user’s exper-
tise and subjective choices, which thus should be considered
carefully before use. These parameters include the kernel size
for the smoothing procedure, the spatial down-sampling and
masking, the spatial normalization, and the choice of statistics.

The rationale for the determining the kernel size for the
smoothing procedure has been previously discussed (Caldara
& Miellet, 2011), and the majority of the arguments we put
forward in this previous article still hold true. Here, we would
remind users that the spatial smoothing procedure mainly re-
solves the sparseness of fixation data. It also partially accounts
for the spatial covariance, which is ignored in univariate pixel-
wise modeling. Finally, it accounts for the recording errors
from eyetrackers, such as drift during the calibration, pupil-
size variations, and so forth.

We also recommend that users perform down-sampling and
apply a mask before modeling their data. This step is important
to reducing computational demands (time, memory, etc.). In
general, we recommend that the down-sampling factor not be
bigger than half of the smoothing kernel size. In other words, if
the FWHMof the Gaussian kernel is 10 pixels, the rescale factor
should be less than 5. We are currently running further simula-
tions and validations to investigate the best parameters under
different settings, and hopefully will provide a statistical data-
driven solution for this choice in future updates.

Spatial normalization (via a z-scored or probability map) is
available as an option in iMap4. Spatial normalization used to
be a standard preprocessing procedure in previous versions of
iMap. However, the hypotheses tested on raw fixation
duration/number maps are fundamentally different from their
spatially normalized versions. Importantly, after spatial nor-
malization, the interpretation of results should be drawn on a
spatially relative bias instead of on the absolute differences.
Of course, if the viewing duration in each trial is constant
within an experiment, spatial normalization will not make
any difference.

For iMap4 we developed two main, nonparametric statis-
tics based on resampling techniques. It is worth noting that
different applicability comes with the choice of permutation
tests versus bootstrap spatial-clustering tests. In our own ex-
perience during empirical and simulation studies, permutation
tests are more sensitive for studies with small sample sizes; the
bootstrap-clustering approach usually gives more homoge-
neous results but is biased toward bigger clusters. We suggest
that users adopt a Bwisdom of crowds^ approach and look at
the agreement among different approaches before concluding
on the data analysis (Marbach et al., 2012). Nonconvergent
results should be interpreted carefully.

An alternative to pixel-wise approaches

In recent years, other frameworks have been also devel-
oped to model eyetracking data (Boccignone, 2015). One

such approach is the aforementioned Poisson point pro-
cess model (Barthelmé et al., 2013). It is a well-
established statistical model when the point (fixation)
occurrence is the main concern. Under some transforma-
tion, the Poisson point processes model of fixation oc-
currences could be expressed and modeled as a logistic
regression, making it straightforward to apply using con-
ventional statistical software (Barthelmé & Chopin,
2015). For example, Nuthmann and Einhäuser (2015)
made use of logistic mixed models to determine the in-
fluence of low- and high- visual properties in scene
images on eye movements. Moreover, smooth effect
and spatial covariants could be captured by applying re-
gression splines in a generalized additive model, as dem-
onstrated in Barthelmé and Chopin (2015).

Importantly, the point process model addresses different
questions than does iMap. It is most appropriate when the
effect of spatial location is considered irrelevant, a nuisance
effect, or a fixed intercept (see, e.g., Barthelmé & Chopin,
2015; Nuthmann & Einhäuser, 2015). As a comparison, in
iMap the parameters of interest are location specific, varying
from pixel to pixel. In other words, the differences or effects
among different conditions are location-specific, forming a
complex pattern in two dimensions. These high dimension
effects are more natural and easy to model using a pixel-
wise model, as in iMap4.

Conclusion and future development

In conclusion, we have presented an advanced eye movement
analysis approach using LMMs and nonparametric statistics:
iMap4. This method is implemented inMATLABwith a user-
friendly interface. We aimed to provide a framework for ana-
lyzing spatial eye movement data with the most sophisticated
statistical modeling to date. The procedure described in the
present article currently represents our best attempt to conform
with the conventional null-hypothesis testing, while providing
options for robust statistics. We currently are still working on
many improvements, including functions to compare different
fitted models, statistics on the random-effect coefficients, and
replacing LMMs with generalized LMMs for modeling fixa-
tion numbers (Bolker, Brooks, Clark, Geange, Poulsen,
Stevens, & White, 2009). In the future, we will also switch
our focus to Bayesian statistics and the generativemodel (such
as the Gaussian process) in an effort to develop a unified
model of statistical inference for eye movement data (Jaynes
& Bretthorst, 2003).
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