60 research outputs found

    The groupoid-based logic for lattice effect algebras

    Full text link
    The aim of the paper is to establish a certain logic corresponding to lattice effect algebras. First, we answer a natural question whether a lattice effect algebra can be represented by means of a groupoid-like structure. We establish a one-to-one correspondence between lattice effect algebras and certain groupoids with an antitone involution. Using these groupoids, we are able to introduce a suitable logic for lattice effect algebras.Comment: 7 page

    More on PT-Symmetry in (Generalized) Effect Algebras and Partial Groups

    Get PDF
    We continue in the direction of our paper on PT-Symmetry in (Generalized) Effect Algebras and Partial Groups. Namely we extend our considerations to the setting of weakly ordered partial groups. In this setting, any operator weakly ordered partial group is a pasting of its partially ordered commutative subgroups of linear operators with a fixed dense domain over bounded operators. Moreover, applications of our approach for generalized effect algebras are mentioned

    Modularity, Atomicity and States in Archimedean Lattice Effect Algebras

    No full text
    Effect algebras are a generalization of many structures which arise in quantum physics and in mathematical economics. We show that, in every modular Archimedean atomic lattice effect algebra E that is not an orthomodular lattice there exists an (o)-continuous state ω on E, which is subadditive. Moreover, we show properties of finite and compact elements of such lattice effect algebras

    Assessment of the roughness factor effect and the intrinsic catalytic activity for hydrogen evolution reaction on Ni-based electrodeposits

    Full text link
    The hydrogen evolution reaction (HER) was studied in 30 wt.% KOH solution at temperatures ranging between 30 and 80 °C on three type of electrodes: (i) rough pure Ni electrodeposits, obtained by applying a large current density; (ii) smooth NiCo electrodeposits; (iii) smooth commercial Ni electrodes. By using steady-state polarization curves and electrochemical impedance spectroscopy (EIS) the surface roughness factor and the intrinsic activities of the catalytic layers were determined. These techniques also permitted us to determine the mechanism and kinetics of the HER on the investigated catalysts. Different AC models were tested and the appropriate one was selected. The overall experimental data indicated that the rough/porous Ni electrode yields the highest electrocatalytic activity in the HER. Nevertheless, when the effect of the surface roughness was taken into consideration, it was demonstrated that alloying Ni with Co results in an increased electrocatalytic activity in the HER when comparing to pure Ni. This is due to an improved intrinsic activity of the material, which was explained on the basis of the synergism among the catalytic properties of Ni (low hydrogen overpotential) and of Co (high hydrogen adsorption).Isaac Herraiz-Cardona is grateful to the Ministerio de Ciencia e Innovacion (Spain) for a postgraduate grant (Ref. AP2007-03737). This work was supported by Generalitat Valenciana (Project PROMETEO/2010/023)Herraiz Cardona, I.; Ortega Navarro, EM.; Garcia-Anton, J.; Pérez-Herranz, V. (2011). Assessment of the roughness factor effect and the intrinsic catalytic activity for hydrogen evolution reaction on Ni-based electrodeposits. International Journal of Hydrogen Energy. 36(16):9428-9438. https://doi.org/10.1016/j.ijhydene.2011.05.047S94289438361

    Facile Hydrogen Evolution Reaction on WO3Nanorods

    Get PDF
    Tungsten trioxide nanorods have been generated by the thermal decomposition (450 °C) of tetrabutylammonium decatungstate. The synthesized tungsten trioxide (WO3) nanorods have been characterized by XRD, Raman, SEM, TEM, HRTEM and cyclic voltammetry. High resolution transmission electron microscopy and X-ray diffraction analysis showed that the synthesized WO3nanorods are crystalline in nature with monoclinic structure. The electrochemical experiments showed that they constitute a better electrocatalytic system for hydrogen evolution reaction in acid medium compared to their bulk counterpart

    A note on extremally disconnected frames

    Get PDF
    corecore