7 research outputs found
Recommended from our members
Integrating cluster formation and cluster evaluation in interactive visual analysis
Cluster analysis is a popular method for data investigation where data items are structured into groups called clusters. This analysis involves two sequential steps, namely cluster formation and cluster evaluation. In this paper, we propose the tight integration of cluster formation and cluster evaluation in interactive visual analysis in order to overcome the challenges that relate to the black-box nature of clustering algorithms. We present our conceptual framework in the form of an interactive visual environment. In this realization of our framework, we build upon general concepts such as cluster comparison, clustering tendency, cluster stability and cluster coherence. Additionally, we showcase our framework on the cluster analysis of mixed lipid bilayers
Dual analysis of DNA microarrays
Microarray data represents the expression levels of genes for different samples and for different conditions. It has been a central topic in bioinformatics research for a long time already. Researchers try to discover groups of genes that are responsible for specific biological processes. Statistical analysis tools and visualizations have been widely used in the analysis of microarray data. Researchers try to build hypotheses on both the genes and the samples. Therefore,such analyses require the joint exploration of the genes and the samples. However, current methods in interactive visual analysis fail to provide the necessary mechanisms for this joint analysis. In this paper, we propose an interactive visual analysis framework that enables the dual analysis of the samples and the genes through the use of integrated statistical tools. We introduce a set of specialized views and a detailed analysis procedure to describe the utilization of our framework
Visual cavity analysis in molecular simulations
Molecular surfaces provide a useful mean for analyzing interactions between biomolecules; such as identification and characterization of ligand binding sites to a host macromolecule. We present a novel technique, which extracts potential binding sites, represented by cavities, and characterize them by 3D graphs and by amino acids. The binding sites are extracted using an implicit function sampling and graph algorithms. We propose an advanced cavity exploration technique based on the graph parameters and associated amino acids. Additionally, we interactively visualize the graphs in the context of the molecular surface. We apply our method to the analysis of MD simulations of Proteinase 3, where we verify the previously described cavities and suggest a new potential cavity to be studied
Recommended from our members
On Computationally-Enhanced Visual Analysis of Heterogeneous Data and Its Application in Biomedical Informatics
Statstjänstemännens löner i oktober 1983
Suomen virallinen tilasto (SVT