25 research outputs found

    La TPE entre certitudes et incertitudes

    No full text
    SIGLEAvailable from INIST (FR), Document Supply Service, under shelf-number : DO 5021 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Particle-related exposure, dose and lung cancer risk of primary school children in two European countries

    Get PDF
    Schools represent a critical microenvironment in terms of air quality due to the proximity to outdoor particle sources and the frequent lack of proper ventilation and filtering systems. Moreover, the population exposed in schools (i.e. children) represents a susceptible population due to their age. Air quality-based studies involving students' exposure at schools are still scarce and often limited to mass-based particle metrics and may thus underestimate the possible effect of sub-micron particles and particle toxicity. To this purpose, the present paper aims to evaluate the exposure to different airborne particle metrics (including both sub- and super-micron particles) and attached carcinogenic compounds. Measurements in terms of particle number, lung-deposited surface area, and PM fraction concentrations were measured inside and outside schools in Barcelona (Spain) and Cassino (Italy). Simultaneously, PM samples were collected and chemically analysed to obtain mass fractions of carcinogenic compounds. School time airborne particle doses received by students in classrooms were evaluated as well as their excess lung cancer risk due to a five-year primary school period. Median surface area dose received by students during school time in Barcelona and Cassino resulted equal to 110 mm2and 303 mm2, respectively. The risk related to the five-year primary school period was estimated as about 2.9 × 10− 5and 1.4 × 10− 4for students of Barcelona and Cassino, respectively. The risk in Barcelona is slightly higher with respect to the maximum tolerable value (10− 5, according to the U.S. Environmental Protection Agency), mainly due to toxic compounds on particles generated from anthropogenic emissions (mainly industry). On the other hand, the excess lung cancer risk in Cassino is cause of concern, being one order of magnitude higher than the above-mentioned threshold value due to the presence of biomass burning heating systems and winter thermal inversion that cause larger doses and great amount of toxic compounds on particles

    The Inosine Monophosphate Dehydrogenase, GuaB2, Is a Vulnerable New Bactericidal Drug Target for Tuberculosis

    Get PDF
    VCC234718, a molecule with growth inhibitory activity against Mycobacterium tuberculosis (Mtb), was identified by phenotypic screening of a 15344-compound library. Sequencing of a VCC234718-resistant mutant identified a Y487C substitution in the inosine monophosphate dehydrogenase, GuaB2, which was subsequently validated to be the primary molecular target of VCC234718 in Mtb. VCC234718 inhibits Mtb GuaB2 with a Ki of 100 nM and is uncompetitive with respect to IMP and NAD+. This compound binds at the NAD+ site, after IMP has bound, and makes direct interactions with IMP; therefore, the inhibitor is by definition uncompetitive. VCC234718 forms strong pi interactions with the Y487 residue side chain from the adjacent protomer in the tetramer, explaining the resistance-conferring mutation. In addition to sensitizing Mtb to VCC234718, depletion of GuaB2 was bactericidal in Mtb in vitro and in macrophages. When supplied at a high concentration (≥125 μM), guanine alleviated the toxicity of VCC234718 treatment or GuaB2 depletion via purine salvage. However, transcriptional silencing of guaB2 prevented Mtb from establishing an infection in mice, confirming that Mtb has limited access to guanine in this animal model. Together, these data provide compelling validation of GuaB2 as a new tuberculosis drug target
    corecore