5,923 research outputs found

    Electrostatic confinement of electrons in an integrable graphene quantum dot

    Full text link
    We compare the conductance of an undoped graphene sheet with a small region subject to an electrostatic gate potential for the cases that the dynamics in the gated region is regular (disc-shaped region) and classically chaotic (stadium). For the disc, we find sharp resonances that narrow upon reducing the area fraction of the gated region. We relate this observation to the existence of confined electronic states. For the stadium, the conductance looses its dependence on the gate voltage upon reducing the area fraction of the gated region, which signals the lack of confinement of Dirac quasiparticles in a gated region with chaotic classical electron dynamics.Comment: 4 pages, 4 figures; [v2] Added discussion of large aspect ratio

    Probability of Reflection by a Random Laser

    Get PDF
    A theory is presented (and supported by numerical simulations) for phase-coherent reflection of light by a disordered medium which either absorbs or amplifies radiation. The distribution of reflection eigenvalues is shown to be the Laguerre ensemble of random-matrix theory. The statistical fluctuations of the albedo (the ratio of reflected and incident power) are computed for arbitrary ratio of sample thickness, mean free path, and absorption or amplification length. On approaching the laser threshold all moments of the distribution of the albedo diverge. Its modal value remains finite, however, and acquires an anomalous dependence on the illuminated surface area.Comment: 8 pages (revtex), 3 figures, to appear in Phys.Rev.Let

    Non-Gaussian fluctuations of mesoscopic persistent currents

    Full text link
    The persistent current in an ensemble of normal-metal rings shows Gaussian distributed sample-to-sample fluctuations with non-Gaussian corrections, which are precursors of the transition into the Anderson localized regime. We here report a calculation of the leading non-Gaussian correction to the current autocorrelation function, which is of third order in the current. Although the third-order correlation function is small, inversely proportional to the dimensionless conductance gg of the ring, the mere fact that it is nonzero is remarkable, since it is an odd moment of the current distribution.Comment: 4+ pages, 2 figure

    Time-delay matrix, midgap spectral peak, and thermopower of an Andreev billiard

    Get PDF
    We derive the statistics of the time-delay matrix (energy derivative of the scattering matrix) in an ensemble of superconducting quantum dots with chaotic scattering (Andreev billiards), coupled ballistically to MM conducting modes (electron-hole modes in a normal metal or Majorana edge modes in a superconductor). As a first application we calculate the density of states ρ0\rho_0 at the Fermi level. The ensemble average ρ0=δ01M[max(0,M+2α/β)]1\langle\rho_0\rangle=\delta_0^{-1}M[\max(0,M+2\alpha/\beta)]^{-1} deviates from the bulk value 1/δ01/\delta_0 by an amount depending on the Altland-Zirnbauer symmetry indices α,β\alpha,\beta. The divergent average for M=1,2M=1,2 in symmetry class D (α=1\alpha=-1, β=1\beta=1) originates from the mid-gap spectral peak of a closed quantum dot, but now no longer depends on the presence or absence of a Majorana zero-mode. As a second application we calculate the probability distribution of the thermopower, contrasting the difference for paired and unpaired Majorana edge modes.Comment: 13 pages, 6 figure

    Rectification of displacement currents in an adiabatic electron pump

    Full text link
    Rectification of ac displacement currents generated by periodic variation of two independent gate voltages of a quantum dot can lead to a dc voltage linear in the frequency. The presence of this rectified displacement current could account for the magnetic field symmetry observed in a recent measurement on an adiabatic quantum electron pump by Switkes et al. [Science 283, 1905 (1999)].Comment: 2 pages, RevTeX; 1 figur

    Spontaneous-Symmetry-Breaking Mechanism of Adiabatic Pumping

    Full text link
    We consider heterostructures consisting of regions with a continuous symmetry in contact with regions wherein the symmetry is spontaneously broken. The low-frequency dynamics of the corresponding order parameter are shown to induce nonequilibrium transport, a ``pumping,'' out of the symmetry-broken regions, which is governed by the generator of the broken-symmetry operator. This pumping damps Goldstone-mode excitations and transfers them beyond traditional (static) proximity length scales. Our general conclusions are discussed for specific examples of order parameters in helimagnets, charge/spin-density waves, superconductors, and ferromagnets. We carry out a detailed calculation of such pumping for spiral magnetic orders in helimagnets possessing a duality in the representation of its symmetry-broken states.Comment: 5 pages, 2 figure

    Fluctuating "order parameter" for a quantum chaotic system with partially broken time-reversal symmetry

    Get PDF
    The functional defined as the squared modulus of the spatial average of the wave function squared, plays the role of an ``order parameter'' for the transition between Hamiltonian ensembles with orthogonal and unitary symmetry. Upon breaking time-reversal symmetry, the order parameter crosses over from one to zero. We compute its distribution in the crossover regime and find that it has large fluctuations around the ensemble average. These fluctuations imply long-range spatial correlations in the eigenfunction and non-Gaussian perturbations of eigenvalues, in precise agreement with results by Fal'ko and Efetov and by Taniguchi, Hashimoto, Simons, and Altshuler. As a third implication of the order-parameter fluctuations we find correlations in the response of an eigenvalue to independent perturbations of the system.Comment: 4 pages, REVTeX-3.0, 1 figure. Reference added to Y. V. Fyodorov and A. D. Mirlin, Phys. Rev. B 51, 13403 (1995
    corecore