17 research outputs found

    Near-infrared molecular imaging of tumors via chemokine receptors CXCR4 and CXCR7

    Get PDF
    The chemokine CXCL12/SDF-1 and its receptors CXCR4 and CXCR7 play a major role in tumor invasion, proliferation and metastasis. Since both receptors are overexpressed on distinct tumor cells and on the tumor vasculature, we evaluated their potential as targets for detection of cancers by molecular imaging. We synthesized conjugates of CXCL12 and the near-infrared (NIR) fluorescent dye IRDye®800CW, tested their selectivity, sensitivity and biological activity in vitro and their feasibility to visualize tumors in vivo. Purified CXCL12-conjugates detected in vitro as low as 500 A764 human glioma cells or MCF-7 breast cancer cells that express CXCR7 alone or together with CXCR4. Binding was time- and concentration-dependent, and the label could be competitively displaced by the native peptide. Control conjugates with bovine serum albumin or lactalbumin failed to label the cells. In mice, the conjugate distributed rapidly. After 1–92 h, subcutaneous tumors of human MCF-7 and A764 cells in immunodeficient mice were detected with high sensitivity. Background was observed in particular in liver within the first 24 h, but also skull and hind limbs yielded some background. Overall, fluorescent CXCL12-conjugates are sensitive and selective probes to detect solid and metastatic tumors by targeting tumor cells and tumor vasculature

    Symptomatic cardiac metastases of breast cancer 27 years after mastectomy: a case report with literature review - pathophysiology of molecular mechanisms and metastatic pathways, clinical aspects, diagnostic procedures and treatment modalities.

    Get PDF
    Metastases to the heart and pericardium are rare but more common than primary cardiac tumours and are generally associated with a rather poor prognosis. Most cases are clinically silent and are undiagnosed in vivo until the autopsy. We present a female patient with a 27-year-old history of an operated primary breast cancer who was presented with dyspnoea, paroxysmal nocturnal dyspnoea and orthopnoea. The clinical signs and symptoms aroused suspicion of congestive heart failure. However, the cardiac metastases were detected during a routine cardiologic evaluation and confirmed with computed tomography imaging. Additionally, this paper outlines the pathophysiology of molecular and clinical mechanisms involved in the metastatic spreading, clinical presentation, diagnostic procedures and treatment of heart metastases. The present case demonstrates that a complete surgical resection and systemic chemotherapy may result in a favourable outcome for many years. However, a lifelong medical follow-up, with the purpose of a detection of metastases, is highly recommended. We strongly call the attention of clinicians to the fact that during the follow-up of all cancer patients, such heart failure may be a harbinger of the secondary heart involvement

    Endoglin expression in breast tumor cells suppresses invasion and metastasis and correlates with improved clinical outcome

    No full text
    Tumor growth factor-beta (TGF-beta) signaling in cancer has been implicated in growth suppression of early lesions and enhancing tumor cell invasion and metastasis. However, the cellular mechanisms that determine this signaling output in individual tumors are still largely unknown. In endothelial cells, TGF-beta signaling is modulated by the TGF-beta co-receptor endoglin (CD105). Here we demonstrate that endoglin is expressed in a subset of invasive breast cancers and cell lines and is subject to epigenetic silencing by gene methylation. Endoglin downregulation in non-tumorigenic MCF10A breast cells leads to the formation of abnormal acini in 3D culture, but does not promote cell migration or transformation. In contrast, in the presence of activated ErbB2, endoglin downregulation in MCF10A cells leads to enhanced invasion into a 3D matrix. Consistent with these data, ectopic expression of endoglin in MDA-MB-231 cells blocks TGF-beta-enhanced cell motility and invasion and reduces lung colonization in an in vivo metastasis model. Unlike endothelial cells, endoglin does not modulate Smad-mediated TGF-beta signaling in breast cells but attenuates the cytoskeletal remodeling to impair cell migration and invasion. Importantly, in a large cohort of invasive breast cancers, lack of endoglin expression in the tumor cell compartment correlates with ENG gene methylation and poor clinical outcome. Oncogene (2011) 30, 1046-1058; doi:10.1038/onc.2010.488; published online 1 November 201

    Critical role of endoglin in tumor cell plasticity of Ewing sarcoma and melanoma

    No full text
    Tumor cell plasticity enables certain types of highly malignant tumor cells to dedifferentiate and engage a plastic multipotent embryonic-like phenotype, which enables them to ‘adapt’ during tumor progression and escape conventional therapeutic strategies. This plastic phenotype of aggressive cancer cells enables them to express endothelial cell-specific markers and form tube-like structures, a phenotype that has been linked to aggressive behavior and poor prognosis. We demonstrate here that the transforming growth factor (TGF)-ß co-receptor endoglin, an endothelial cell marker, is expressed by tumor cells and its expression correlates with tumor cell plasticity in two types of human cancer, Ewing sarcoma and melanoma. Moreover, endoglin expression was significantly associated with worse survival of Ewing sarcoma patients. Endoglin knockdown in tumor cells interferes with tumor cell plasticity and reduces invasiveness and anchorage-independent growth in vitro. Ewing sarcoma and melanoma cells with reduced endoglin levels showed reduced tumor growth in vivo. Mechanistically, we provide evidence that endoglin, while interfering with TGF-ß signaling, is required for efficient bone morphogenetic protein, integrin, focal adhesion kinase and phosphoinositide-3-kinase signaling in order to maintain tumor cell plasticity. The present study delineates an important role of endoglin in tumor cell plasticity and progression of aggressive tumors
    corecore