190 research outputs found

    Three-Dimensional Structure of the Magnetic Field in the Disk of the Milky Way

    Full text link
    We present Rotation Measures (RM) of the diffuse Galactic synchrotron emission from the Canadian Galactic Plane Survey (CGPS) and compare them to RMs of extragalactic sources in order to study the large-scale reversal in the Galactic magnetic field (GMF). Using Stokes Q, U and I measurements of the Galactic disk collected with the Synthesis Telescope at the Dominion Radio Astrophysical Observatory, we calculate RMs over an extended region of the sky, focusing on the low longitude range of the CGPS (l=52deg to l=72deg). We note the similarity in the structures traced by the compact sources and the extended emission and highlight the presence of a gradient in the RM map across an approximately diagonal line, which we identify with the well-known field reversal of the Sagittarius-Carina arm. We suggest that the orientation of this reversal is a geometric effect resulting from our location within a GMF structure arising from current sheets that are not perpendicular to the Galactic plane, as is required for a strictly radial field reversal, but that have at least some component parallel to the disk. Examples of models that fit this description are the three-dimensional dynamo-based model of Gressel et al. (2013) and a Galactic scale Parker spiral (Akasofu & Hakamada 1982), although the latter may be problematic in terms of Galactic dynamics. We emphasize the importance of constructing three-dimensional models of the GMF to account for structures like the diagonal RM gradient observed in this dataset.Comment: Published in Astronomy and Astrophysics, Accepted 23 April, 201

    Multimode electromagnetically-induced transparency on a single atomic line

    Full text link
    We experimentally investigate electromagnetically-induced transparency (EIT) created on an inhomogeneously broadened 5S_1/2-5P_1/2 transition in rubidium vapor using a control field of a complex temporal shape. A comb-shaped transparency spectrum enhances the delay-bandwidth product and the light storage capacity for a matched probe pulse by a factor of about 50 compared to a single EIT line [D. D. Yavuz, Phys. Rev. A 75, 031801 (2007)]. If the temporal mode of the control field is slowly changed while the probe is propagating through the EIT medium, the probe will adiabatically follow, providing a means to perform frequency conversion and optical routing

    Diabetic Csf1op/op Mice Lacking Macrophages Are Protected Against the Development of Delayed Gastric Emptying

    Get PDF
    Background & AimsDiabetic gastroparesis is associated with changes in interstitial cells of Cajal (ICC), neurons, and smooth muscle cells in both animal models and humans. Macrophages appear to be critical to the development of cellular damage that leads to delayed gastric emptying (GE), but the mechanisms involved are not well understood. Csf1op/op (Op/Op) mice lack biologically active Csf1 (macrophage colony stimulating factor), resulting in the absence of Csf1-dependent tissue macrophages. We used Csf1op/op mice to determine the role of macrophages in the development of delayed GE.MethodsAnimals were injected with streptozotocin to make them diabetic. GE was determined weekly. Immunohistochemistry was used to identify macrophages and ICC networks in the gastric muscular layers. Oxidative stress was measured by serum malondialdehyde (MDA) levels. Quantitative reverse-transcription polymerase chain reaction was used to measure levels of mRNA.ResultsCsf1op/op mice had normal ICC. With onset of diabetes both Csf1op/op and wild-type Csf1+/+ mice developed increased levels of oxidative stress (75.8 ± 9.1 and 41.2 ± 13.6 nmol/mL MDA, respectively). Wild-type Csf1+/+ mice developed delayed GE after the onset of diabetes (4 of 13) whereas no diabetic Csf1op/op mouse developed delayed GE (0 of 15, P = .035). The ICC were disrupted in diabetic wild-type Csf1+/+ mice with delayed GE but remained normal in diabetic Csf1op/op mice.ConclusionsCellular injury and development of delayed GE in diabetes requires the presence of muscle layer macrophages. Targeting macrophages may be an effective therapeutic option to prevent cellular damage and development of delayed GE in diabetes

    The Global Magneto-Ionic Medium Survey: A Faraday Depth Survey of the Northern Sky Covering 1280-1750 MHz

    Get PDF
    The Galactic interstellar medium hosts a significant magnetic field, which can be probed through the synchrotron emission produced from its interaction with relativistic electrons. Linearly polarized synchrotron emission is generated throughout the Galaxy, and at longer wavelengths, modified along nearly every path by Faraday rotation in the intervening magneto-ionic medium. Full characterization of the polarized emission requires wideband observations with many frequency channels. We have surveyed polarized radio emission from the Northern sky over the the range 1280-1750 MHz, with channel width 236.8 kHz, using the John A. Galt Telescope (diameter 25.6 m) at the Dominion Radio Astrophysical Observatory, as part of the Global Magneto-Ionic Medium Survey. The survey covered 72% of the sky, declinations -30 to +87 degrees at all right ascensions. The intensity scale was absolutely calibrated, based on the flux density and spectral index of Cygnus A. Polarization angle was calibrated using the extended polarized emission of the Fan Region. Data are presented as brightness temperatures with angular resolution 40'. Sensitivity in Stokes Q and U is 45 mK rms in a 1.18 MHz band. We have applied rotation measure synthesis to the data to obtain a Faraday depth cube of resolution 150 radians per square metre and sensitivity 3 mK rms of polarized intensity. Features in Faraday depth up to a width of 110 radians per square metre are represented. The maximum detectable Faraday depth is +/- 20,000 radians per square metre. The survey data are available at the Canadian Astronomy Data Centre.Comment: Accepted for publication in the Astronomical Journa

    Structure in the Magnetic Field of the Milky Way Disk and Halo traced by Faraday Rotation

    Get PDF
    Magnetic fields in the ionized medium of the disk and halo of the Milky Way impose Faraday rotation on linearly polarized radio emission. We compare two surveys mapping the Galactic Faraday rotation, one showing the rotation measures of extragalactic sources seen through the Galaxy (from Hutschenreuter et al 2022), and one showing the Faraday depth of the diffuse Galactic synchrotron emission from the Global Magneto-Ionic Medium Survey. Comparing the two data sets in 5deg x 10deg bins shows good agreement at intermediate latitudes, 10 < |b| < 50 deg, and little correlation between them at lower and higher latitudes. Where they agree, both tracers show clear patterns as a function of Galactic longitude: in the Northern Hemisphere a strong sin(2 x longitude) pattern, and in the Southern hemisphere a sin(longitude + pi) pattern. Pulsars with height above or below the plane |z| > 300 pc show similar longitude dependence in their rotation measures. Nearby non-thermal structures show rotation measure shadows as does the Orion-Eridanus superbubble. We describe families of dynamo models that could explain the observed patterns in the two hemispheres. We suggest that a field reversal, known to cross the plane a few hundred pc inside the solar circle, could shift to positive z with increasing Galactic radius to explain the sin(2xlongitude) pattern in the Northern Hemisphere. Correlation shows that rotation measures from extragalactic sources are one to two times the corresponding rotation measure of the diffuse emission, implying Faraday complexity along some lines of sight, especially in the Southern hemisphere.Comment: 37 pages, 26 figures, Ap. J. accepte

    The Global Magneto-Ionic Medium Survey (GMIMS): The brightest polarized region in the Southern sky at 75cm and its implications for Radio Loop II

    Get PDF
    Using the Global Magneto-Ionic Medium Survey (GMIMS) Low-Band South (LBS) southern sky polarization survey, covering 300 to 480 MHz at 81 arcmin resolution, we reveal the brightest region in the Southern polarized sky at these frequencies. The region, G150-50, covers nearly 20deg2^2, near (l,b)~(150 deg,-50 deg). Using GMIMS-LBS and complementary data at higher frequencies (~0.6--30 GHz), we apply Faraday tomography and Stokes QU-fitting techniques. We find that the magnetic field associated with G150-50 is both coherent and primarily in the plane of the sky, and indications that the region is associated with Radio Loop II. The Faraday depth spectra across G150-50 are broad and contain a large-scale spatial gradient. We model the magnetic field in the region as an expanding shell, and we can reproduce both the observed Faraday rotation and the synchrotron emission in the GMIMS-LBS band. Using QU-fitting, we find that the Faraday spectra are produced by several Faraday dispersive sources along the line-of-sight. Alternatively, polarization horizon effects that we cannot model are adding complexity to the high-frequency polarized spectra. The magnetic field structure of Loop II dominates a large fraction of the sky, and studies of the large-scale polarized sky will need to account for this object. Studies of G150-50 with high angular resolution could mitigate polarization horizon effects, and clarify the nature of G150-50.Comment: 25 pages, 14 figures. Accepted for publication in MNRA

    The effects of repetitive use and pathological remodeling on channelrhodopsin function in cardiomyocytes

    Get PDF
    Aim: Channelrhodopsins (ChRs) are a large family of light-gated ion channels with distinct properties, which is of great importance in the selection of a ChR variant for a given application. However, data to guide such selection for cardiac optogenetic applications are lacking. Therefore, we investigated the functioning of different ChR variants in normal and pathological hypertrophic cardiomyocytes subjected to various illumination protocols.Methods and Results: Isolated neonatal rat ventricular cardiomyocytes (NRVMs) were transduced with lentiviral vectors to express one of the following ChR variants: H134R, CatCh, ReaChR, or GtACR1. NRVMs were treated with phenylephrine (PE) to induce pathological hypertrophy (PE group) or left untreated [control (CTL) group]. In these groups, ChR currents displayed unique and significantly different properties for each ChR variant on activation by a single 1-s light pulse (1 mW/mm(2): 470, 565, or 617 nm). The concomitant membrane potential (V-m) responses also showed a ChR variant-specific profile, with GtACR1 causing a slight increase in average V-m during illumination (V-plateau: -38 mV) as compared with a V-plateau > -20 mV for the other ChR variants. On repetitive activation at increasing frequencies (10-ms pulses at 1-10 Hz for 30 s), peak currents, which are important for cardiac pacing, decreased with increasing activation frequencies by 17-78% (p 0.05).Conclusion: Our data show that ChR variants function equally well in cell culture models of healthy and pathologically hypertrophic myocardium but show strong, variant-specific use-dependence. This use-dependent nature of ChR function should be taken into account during the design of cardiac optogenetic studies and the interpretation of the experimental findings thereof.Cardiolog

    p21 produces a bioactive secretome that places stressed cells under immunosurveillance

    Get PDF
    Immune cells identify and destroy damaged cells to prevent them from causing cancer or other pathologies by mechanisms that remain poorly understood. Here, we report that the cell-cycle inhibitor p21 places cells under immunosurveillance to establish a biological timer mechanism that controls cell fate. p21 activates retinoblastoma protein (Rb)-dependent transcription at select gene promoters to generate a complex bioactive secretome, termed p21-activated secretory phenotype (PASP). The PASP includes the chemokine CXCL14, which promptly attracts macrophages. These macrophages disengage if cells normalize p21 within 4 days, but if p21 induction persists, they polarize toward an M1 phenotype and lymphocytes mount a cytotoxic T cell response to eliminate target cells, including preneoplastic cells. Thus, p21 concurrently induces proliferative arrest and immunosurveillance of cells under duress

    Characterization of the John A. Galt telescope for radio holography with CHIME

    Full text link
    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) will measure the 21 cm emission of astrophysical neutral hydrogen to probe large scale structure at redshifts z=0.8-2.5. However, detecting the 21 cm signal beneath substantially brighter foregrounds remains a key challenge. Due to the high dynamic range between 21 cm and foreground emission, an exquisite calibration of instrument systematics, notably the telescope beam, is required to successfully filter out the foregrounds. One technique being used to achieve a high fidelity measurement of the CHIME beam is radio holography, wherein signals from each of CHIME's analog inputs are correlated with the signal from a co-located reference antenna, the 26 m John A. Galt telescope, as the 26 m Galt telescope tracks a bright point source transiting over CHIME. In this work we present an analysis of several of the Galt telescope's properties. We employ driftscan measurements of several bright sources, along with background estimates derived from the 408 MHz Haslam map, to estimate the Galt system temperature. To determine the Galt telescope's beam shape, we perform and analyze a raster scan of the bright radio source Cassiopeia A. Finally, we use early holographic measurements to measure the Galt telescope's geometry with respect to CHIME for the holographic analysis of the CHIME and Galt interferometric data set
    corecore