1,623 research outputs found

    Registered and antiregistered phase separation of mixed amphiphilic bilayers

    Get PDF
    We derive a mean-field free energy for the phase behaviour of coupled bilayer leaflets, which is implicated in cellular processes and important to the design of artificial membranes. Our model accounts for amphiphile-level structural features, particularly hydrophobic mismatch, which promotes antiregistration (AR), in competition with the `direct' trans-midplane coupling usually studied, promoting registration (R). We show that the phase diagram of coupled leaflets allows multiple \textit{metastable} coexistences, then illustrate the kinetic implications with a detailed study of a bilayer of equimolar overall composition. For approximate parameters estimated to apply to phospholipids, equilibrium coexistence is typically registered, but metastable antiregistered phases can be kinetically favoured by hydrophobic mismatch. Thus a bilayer in the spinodal region can require nucleation to equilibrate, in a novel manifestation of Ostwald's `rule of stages'. Our results provide a framework for understanding disparate existing observations, elucidating a subtle competition of couplings, and a key role for phase transition kinetics in bilayer phase behaviour.Comment: Final authors' version. Important typo in Eq. A24 corrected. To appear in Biophysical Journa

    A Minimal Model for Vorticity and Gradient Banding in Complex Fluids

    Full text link
    A general phenomenological reaction-diffusion model for flow-induced phase transitions in complex fluids is presented. The model consists of an equation of motion for a nonconserved composition variable, coupled to a Newtonian stress relations for the reactant and product species. Multivalued reaction terms allow for different homogeneous phases to coexist with each other, resulting in banded composition and shear rate profiles. The one-dimensional equation of motion is evolved from a random initial state to its final steady-state. We find that the system chooses banded states over homogeneous states, depending on the shape of the stress constitutive curve and the magnitude of the diffusion coefficient. Banding in the flow gradient direction under shear rate control is observed for shear-thinning transitions, while banding in the vorticity direction under stress control is observed for shear-thickening transitions.Comment: 11 pages, submitted to Eur Phys J

    A non-monotonic constitutive model is not necessary to obtain shear banding phenomena in entangled polymer solutions

    Get PDF
    In 1975 Doi and Edwards predicted that entangled polymer melts and solutions can have a constitutive instability, signified by a decreasing stress for shear rates greater than the inverse of the reptation time. Experiments did not support this, and more sophisticated theories incorporated Marrucci's idea (1996) of removing constraints by advection; this produced a monotonically increasing stress and thus stable constitutive behavior. Recent experiments have suggested that entangled polymer solutions may possess a constitutive instability after all, and have led some workers to question the validity of existing constitutive models. In this Letter we use a simple modern constitutive model for entangled polymers, the non-stretching Rolie-Poly model with an added solvent viscosity, and show that (1) instability and shear banding is captured within this simple class of models; (2) shear banding phenomena is observable for weakly stable fluids in flow geometries that impose a sufficiently inhomogeneous total shear stress; (3) transient phenomena can possess inhomogeneities that resemble shear banding, even for weakly stable fluids. Many of these results are model-independent.Comment: 5 figure

    The Place of History in Medicine

    Get PDF

    Method for Computing Short-Range Forces between Solid-Liquid Interfaces Driving Grain Boundary Premelting

    Full text link
    We present a molecular dynamics based method for computing accurately short-range structural forces resulting from the overlap of spatially diffuse solid-liquid interfaces at wetted grain boundaries close to the melting point. The method is based on monitoring the fluctuations of the liquid layer width at different temperatures to extract the excess interfacial free-energy as a function of this width. The method is illustrated for a high energy Sigma 9 twist boundary in pure Ni. The short-range repulsion driving premelting is found to be dominant in comparison to long-range dispersion and entropic forces and consistent with previous experimental findings that nanometer-scale layer widths may only be observed very close to the melting point.Comment: 5 pages, four figure

    A Comparative Study of Knots of Star Formation in Interacting vs. Spiral Galaxies

    Full text link
    Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published H-alpha images, we have compared the star formation rates of ~700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high star formation rates than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger star formation. Published Hubble Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The star formation rates of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest star formation rates, the apparent dust attenuation is consistent with the Calzetti starburst dust attenuation law. This suggests that the high luminosity regions are dominated by a central group of young stars surrounded by a shell of clumpy interstellar gas. In contrast, the lower luminosity clumps are bright in the UV relative to H-alpha, suggesting either a high differential attenuation between the ionized gas and the stars, or a post-starburst population bright in the UV but faded in H-alpha. The fraction of the global light of the galaxies in the clumps is higher on average for the interacting galaxies than for the spirals. Thus the star forming regions in interacting galaxies are more luminous, dustier, or younger on average.Comment: Astronomical Journal, in pres
    • …
    corecore