In 1975 Doi and Edwards predicted that entangled polymer melts and solutions
can have a constitutive instability, signified by a decreasing stress for shear
rates greater than the inverse of the reptation time. Experiments did not
support this, and more sophisticated theories incorporated Marrucci's idea
(1996) of removing constraints by advection; this produced a monotonically
increasing stress and thus stable constitutive behavior. Recent experiments
have suggested that entangled polymer solutions may possess a constitutive
instability after all, and have led some workers to question the validity of
existing constitutive models. In this Letter we use a simple modern
constitutive model for entangled polymers, the non-stretching Rolie-Poly model
with an added solvent viscosity, and show that (1) instability and shear
banding is captured within this simple class of models; (2) shear banding
phenomena is observable for weakly stable fluids in flow geometries that impose
a sufficiently inhomogeneous total shear stress; (3) transient phenomena can
possess inhomogeneities that resemble shear banding, even for weakly stable
fluids. Many of these results are model-independent.Comment: 5 figure