42 research outputs found

    Cure of Chronic Viral Infection and Virus-Induced Type 1 Diabetes by Neutralizing Antibodies

    Get PDF
    The use of neutralizing antibodies is one of the most successful methods to interfere with receptor–ligand interactions in vivo. In particular blockade of soluble inflammatory mediators or their corresponding cellular receptors was proven an effective way to regulate inflammation and/or prevent its negative consequences. However, one problem that comes along with an effective neutralization of inflammatory mediators is the general systemic immunomodulatory effect. It is, therefore, important to design a treatment regimen in a way to strike at the right place and at the right time in order to achieve maximal effects with minimal duration of immunosuppression or hyperactivation. In this review, we reflect on two examples of how short time administration of such neutralizing antibodies can block two distinct inflammatory consequences of viral infection. First, we review recent findings that blockade of IL-10/IL-10R interaction can resolve chronic viral infection and second, we reflect on how neutralization of the chemokine CXCL10 can abrogate virus-induced type 1 diabetes

    Immunosuppression during Acute Infection with Foot-and-Mouth Disease Virus in Swine Is Mediated by IL-10

    Get PDF
    Foot-and-mouth disease virus (FMDV) is one of the most contagious animal viruses, causing a devastating disease in cloven-hoofed animals with enormous economic consequences. Identification of the different parameters involved in the immune response elicited against FMDV remains unclear, and it is fundamental the understanding of such parameters before effective control measures can be put in place. In the present study, we show that interleukin-10 (IL-10) production by dendritic cells (DCs) is drastically increased during acute infection with FMDV in swine. In vitro blockade of IL-10 with a neutralizing antibody against porcine IL-10 restores T cell activation by DCs. Additionally, we describe that FMDV infects DC precursors and interferes with DC maturation and antigen presentation capacity. Thus, we propose a new mechanism of virus immunity in which a non-persistent virus, FMDV, induces immunosuppression by an increment in the production of IL-10, which in turn, reduces T cell function. This reduction of T cell activity may result in a more potent induction of neutralizing antibody responses, clearing the viral infection

    Zen and the Art of Living Mindfully: The Health-Enhancing Potential of Zen Aesthetics

    Get PDF
    Amidst the burgeoning enthusiasm for mindfulness in the West, there is a concern that the largely secular ‘de-contextualized’ way in which it is being harnessed is denuding it of its potential to improve health and well-being. As such, efforts are underway to ‘re-contextualize’ mindfulness, explicitly drawing on the wider framework of Buddhist ideas and practices in which it was initially developed. This paper aims to contribute to this, doing so by focusing on Zen Buddhism, and in particular on Zen aesthetic principles. The article concentrates on the seven principles identified by Hisamatsu (1971) in his classic text Zen and the Fine Arts: kanso (simplicity); fukinsei (asymmetry); koko (austere sublimity); shizen (naturalness); daisuzoku (freedom from routine); sei-jaku (tranquillity); and yūgen (profound grace). The presence of these principles in works of art is seen as reflecting and communicating insights that are central to Buddhism, such as non-attachment. Moreover, these principles do not only apply to the creation and appreciation of art, but have clear applications for treating health-related issues, and improving quality of life more generally. This paper makes the case that embodying these principles in their lives can help people enhance their psychosomatic well-being, and come to a truer understanding of the essence of mindful living

    Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques

    Get PDF
    HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4+ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant region of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Thus, some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses
    corecore