6,459 research outputs found

    CAMMD: Context Aware Mobile Medical Devices

    Get PDF
    Telemedicine applications on a medical practitioners mobile device should be context-aware. This can vastly improve the effectiveness of mobile applications and is a step towards realising the vision of a ubiquitous telemedicine environment. The nomadic nature of a medical practitioner emphasises location, activity and time as key context-aware elements. An intelligent middleware is needed to effectively interpret and exploit these contextual elements. This paper proposes an agent-based architectural solution called Context-Aware Mobile Medical Devices (CAMMD). This framework can proactively communicate patient records to a portable device based upon the active context of its medical practitioner. An expert system is utilised to cross-reference the context-aware data of location and time against a practitioners work schedule. This proactive distribution of medical data enhances the usability and portability of mobile medical devices. The proposed methodology alleviates constraints on memory storage and enhances user interaction with the handheld device. The framework also improves utilisation of network bandwidth resources. An experimental prototype is presented highlighting the potential of this approach

    Functional Literacy, Educational Attainment and Earnings - A Multi-Country Comparison

    Get PDF
    In this paper a rich and innovative dataset, the International Adult Literacy Survey, is used to examine the impact of functional literacy on earnings. We show that the estimated return to formal education is sensitive to the inclusion of literacy - excluding it biases the return to education in many countries by significant amounts. Literacy itself has a well-determined effect on earnings in all countries though with considerable variation in the size of the effect. The benefits of literacy do not only arise from increasing low levels of literacy: increases at already high levels generate substantial increases in earnings in some countries. In general we find little interaction between schooling and literacy though for a few countries they appear to complement each other.

    Contact based void partitioning to assess filtration properties in DEM simulations

    Get PDF
    Discrete element method (DEM) simulations model the behaviour of a granular material by explicitly considering the individual particles. In principle, DEM analyses then provide a means to relate particle scale mechanisms with the overall, macro-scale response. However, interpretative algorithms must be applied to gain useful scientific insight using the very large amount of data available from DEM simulations. The particle and contact coordinates as well as the contact orientations can be directly obtained from a DEM simulation and the application of measures such as the coordination number and the fabric tensor to describe these data is now well-established. However, a granular material has two phases and a full description of the material also requires consideration of the voids. Quantitative analysis of the void space can give further insight into directional fabric and is also useful in assessing the filtration characteristics of a granular material. The void topology is not directly given by the DEM simulation data; rather it must be inferred from the geometry of particle phase. The current study considers the use of the contact coordinates to partition the void space for 3D DEM simulation datasets and to define individual voids as well as the boundaries or constrictions between the voids. The measured constriction sizes are comparable to those calculated using Delaunay-triangulation based methods, and the contact-based method has the advantage of being less subjective. In an example application, the method was applied to DEM models of reservoir sandstones to establish the relationship between particle and constriction sizes as well as the relationship between the void topology and the coordination number and the evolution of these properties during shearing

    Pile penetration in crushable soils:Insights from micromechanical modelling

    Get PDF

    Systematic Errors in Cosmic Microwave Background Interferometry

    Get PDF
    Cosmic microwave background (CMB) polarization observations will require superb control of systematic errors in order to achieve their full scientific potential, particularly in the case of attempts to detect the B modes that may provide a window on inflation. Interferometry may be a promising way to achieve these goals. This paper presents a formalism for characterizing the effects of a variety of systematic errors on interferometric CMB polarization observations, with particular emphasis on estimates of the B-mode power spectrum. The most severe errors are those that couple the temperature anisotropy signal to polarization; such errors include cross-talk within detectors, misalignment of polarizers, and cross-polarization. In a B mode experiment, the next most serious category of errors are those that mix E and B modes, such as gain fluctuations, pointing errors, and beam shape errors. The paper also indicates which sources of error may cause circular polarization (e.g., from foregrounds) to contaminate the cosmologically interesting linear polarization channels, and conversely whether monitoring of the circular polarization channels may yield useful information about the errors themselves. For all the sources of error considered, estimates of the level of control that will be required for both E and B mode experiments are provided. Both experiments that interfere linear polarizations and those that interfere circular polarizations are considered. The fact that circular experiments simultaneously measure both linear polarization Stokes parameters in each baseline mitigates some sources of error.Comment: 19 pages, 9 figures, submitted to Phys. Rev.

    Logarithmic behavior of degradation dynamics in metal--oxide semiconductor devices

    Full text link
    In this paper the authors describe a theoretical simple statistical modelling of relaxation process in metal-oxide semiconductor devices that governs its degradation. Basically, starting from an initial state where a given number of traps are occupied, the dynamics of the relaxation process is measured calculating the density of occupied traps and its fluctuations (second moment) as function of time. Our theoretical results show a universal logarithmic law for the density of occupied traps ˉϕ(T,EF)(A+Blnt)\bar{} \sim \phi (T,E_{F}) (A+B \ln t), i.e., the degradation is logarithmic and its amplitude depends on the temperature and Fermi Level of device. Our approach reduces the work to the averages determined by simple binomial sums that are corroborated by our Monte Carlo simulations and by experimental results from literature, which bear in mind enlightening elucidations about the physics of degradation of semiconductor devices of our modern life

    Mosaicking with cosmic microwave background interferometers

    Get PDF
    Measurements of cosmic microwave background (CMB) anisotropies by interferometers offer several advantages over single-dish observations. The formalism for analyzing interferometer CMB data is well developed in the flat-sky approximation, valid for small fields of view. As the area of sky is increased to obtain finer spectral resolution, this approximation needs to be relaxed. We extend the formalism for CMB interferometry, including both temperature and polarization, to mosaics of observations covering arbitrarily large areas of the sky, with each individual pointing lying within the flat-sky approximation. We present a method for computing the correlation between visibilities with arbitrary pointing centers and baselines and illustrate the effects of sky curvature on the l-space resolution that can be obtained from a mosaic.Comment: 9 pages; submitted to Ap

    Shape up! Perception based body shape variation for data-driven crowds

    Get PDF
    Representative distribution of body shapes is needed when simulating crowds in real-world situations, e.g., for city or event planning. Visual realism and plausibility are often also required for visualization purposes, while these are the top criteria for crowds in entertainment applications such as games and movie production. Therefore, achieving representative and visually plausible body-shape variation while optimizing available resources is an important goal. We present a data-driven approach to generating and selecting models with varied body shapes, based on body measurement and demographic data from the CAESAR anthropometric database. We conducted an online perceptual study to explore the relationship between body shape, distinctiveness and attractiveness for bodies close to the median height and girth. We found that the most salient body differences are in size and upper-lower body ratios, in particular with respect to shoulders, waist and hips. Based on these results, we propose strategies for body shape selection and distribution that we have validated with a lab-based perceptual study. Finally, we demonstrate our results in a data-driven crowd system with perceptually plausible and varied body shape distribution

    Strong-field tidal distortions of rotating black holes: Formalism and results for circular, equatorial orbits

    Get PDF
    Tidal coupling between members of a compact binary system can have an interesting and important influence on that binary's dynamical inspiral. Tidal coupling also distorts the binary's members, changing them (at lowest order) from spheres to ellipsoids. At least in the limit of fluid bodies and Newtonian gravity, there are simple connections between the geometry of the distorted ellipsoid and the impact of tides on the orbit's evolution. In this paper, we develop tools for investigating tidal distortions of rapidly rotating black holes using techniques that are good for strong-field, fast-motion binary orbits. We use black hole perturbation theory, so our results assume extreme mass ratios. We develop tools to compute the distortion to a black hole's curvature for any spin parameter, and for tidal fields arising from any bound orbit, in the frequency domain. We also develop tools to visualize the horizon's distortion for black hole spin a/M3/2a/M \le \sqrt{3}/2 (leaving the more complicated a/M>3/2a/M > \sqrt{3}/2 case to a future analysis). We then study how a Kerr black hole's event horizon is distorted by a small body in a circular, equatorial orbit. We find that the connection between the geometry of tidal distortion and the orbit's evolution is not as simple as in the Newtonian limit.Comment: 37 pages, 8 figures. Accepted for publication to Physical Review D. This version corrects a number of typographical errors found when reviewing the page proof

    Fermi-LAT and Suzaku Observations of the Radio Galaxy Centaurus B

    Get PDF
    Centaurus B is a nearby radio galaxy positioned in the Southern hemisphere close to the Galactic plane. Here we present a detailed analysis of about 43 months of accumulated Fermi-LAT data of the gamma-ray counterpart of the source initially reported in the 2nd Fermi-LAT catalog, and of newly acquired Suzaku X-ray data. We confirm its detection at GeV photon energies, and analyze the extension and variability of the gamma-ray source in the LAT dataset, in which it appears as a steady gamma-ray emitter. The X-ray core of Centaurus B is detected as a bright source of a continuum radiation. We do not detect however any diffuse X-ray emission from the known radio lobes, with the provided upper limit only marginally consistent with the previously claimed ASCA flux. Two scenarios that connect the X-ray and gamma-ray properties are considered. In the first one, we assume that the diffuse non-thermal X-ray emission component is not significantly below the derived Suzaku upper limit. In this case, modeling the inverse-Compton emission shows that the observed gamma-ray flux of the source may in principle be produced within the lobes. This association would imply that efficient in-situ acceleration of the radiating electrons is occurring and that the lobes are dominated by the pressure from the relativistic particles. In the second scenario, with the diffuse X-ray emission well below the Suzaku upper limits, the lobes in the system are instead dominated by the magnetic pressure. In this case, the observed gamma-ray flux is not likely to be produced within the lobes, but instead within the nuclear parts of the jet. By means of synchrotron self-Compton modeling we show that this possibility could be consistent with the broad-band data collected for the unresolved core of Centaurus B, including the newly derived Suzaku spectrum.Comment: Accepted for publication in A&A. 11 page
    corecore