1,014 research outputs found

    The influence of indenter tip rounding on the indentation size effect

    No full text
    A model was developed to interpret the indentation size effect. The model considers the tip wear effect, causing a rounded tip, the plastic zone size and various strengthening contributions, including geometrically necessary dislocations, preexisting statistically stored dislocations and grain size. It is shown that the shape of the worn tip can be effectively determined through calibration experiments. The model is applied to predict dislocation densities, and shows a good correspondence with published data on dislocation densities in copper single crystals. Predicted ISE is shown to be in good correspondence with published data on a range of metals, and an improvement over existing models is demonstrated

    Microembossing of ultrafine grained Al: microstructural analysis and finite element modelling

    No full text
    Ultra fine grained (UFG) Al-1050 processed by equal channel angular pressing (ECAP) and UFG Al-Mg-Cu-Mn processed by high pressure torsion (HPT) were embossed at both room temperature and 300 °C, with the aim of producing micro-channels. The behaviour of Al alloys during the embossing process was analysed using finite element (FE) modelling. The cold embossing of both Al alloys is characterised by a partial pattern transfer, a large embossing force, channels with oblique sidewalls and a large failure rate of the mould. The hot embossing is characterised by straight channel sidewalls, fully transferred patterns and reduced loads which decrease the failure rate of the mould. Hot embossing of UFG Al-Mg-Cu-Mn produced by HPT shows a potential of fabrication of microelectromechanical system (MEMS) components with micro channels

    Chimeric piggyBac transposases for genomic targeting in human cells.

    Get PDF
    Integrating vectors such as viruses and transposons insert transgenes semi-randomly and can potentially disrupt or deregulate genes. For these techniques to be of therapeutic value, a method for controlling the precise location of insertion is required. The piggyBac (PB) transposase is an efficient gene transfer vector active in a variety of cell types and proven to be amenable to modification. Here we present the design and validation of chimeric PB proteins fused to the Gal4 DNA binding domain with the ability to target transgenes to pre-determined sites. Upstream activating sequence (UAS) Gal4 recognition sites harbored on recipient plasmids were preferentially targeted by the chimeric Gal4-PB transposase in human cells. To analyze the ability of these PB fusion proteins to target chromosomal locations, UAS sites were randomly integrated throughout the genome using the Sleeping Beauty transposon. Both N- and C-terminal Gal4-PB fusion proteins but not native PB were capable of targeting transposition nearby these introduced sites. A genome-wide integration analysis revealed the ability of our fusion constructs to bias 24% of integrations near endogenous Gal4 recognition sequences. This work provides a powerful approach to enhance the properties of the PB system for applications such as genetic engineering and gene therapy

    SCHISTOSOMIASIS: GEOSPATIAL SURVEILLANCE AND RESPONSE SYSTEMS IN SOUTHEAST ASIA

    Get PDF
    Geographic information system (GIS) and remote sensing (RS) from Earth-observing satellites offer opportunities for rapid assessment of areas endemic for vector-borne diseases including estimates of populations at risk and guidance to intervention strategies. This presentation deals with GIS and RS applications for the control of schistosomiasis in China and the Philippines. It includes large-scale risk mapping including identification of suitable habitats for Oncomelania hupensis, the intermediate host snail of Schistosoma japonicum. Predictions of infection risk are discussed with reference to ecological transformations and the potential impact of climate change and the potential for long-term temperature increases in the North as well as the impact on rivers, lakes and water resource developments. Potential integration of geospatial mapping and modeling in schistosomiasis surveillance and response systems in Asia within Global Earth Observation System of Systems (GEOSS) guidelines in the health societal benefit area is discussed

    Formation of an Icosahedral Structure during the Freezing of Gold Nanoclusters: Surface-Induced Mechanism

    Full text link
    The freezing behavior of gold nanoclusters was studied by employing molecular dynamics simulations based on a semi-empirical embedded-atom method. Investigations of the gold nanoclusters revealed that, just after freezing, ordered nano-surfaces with a fivefold symmetry were formed with interior atoms remaining in the disordered state. Further lowering of temperatures induced nano-crystallization of the interior atoms that proceeded from the surface towards the core region, finally leading to an icosahedral structure. These dynamic processes explain why the icosahedral cluster structure is dominantly formed in spite of its energetic metastability.Comment: 9 pages, 4 figures(including 14 eps-files

    An Improved Upper Bound for the Ring Loading Problem

    Full text link
    The Ring Loading Problem emerged in the 1990s to model an important special case of telecommunication networks (SONET rings) which gained attention from practitioners and theorists alike. Given an undirected cycle on nn nodes together with non-negative demands between any pair of nodes, the Ring Loading Problem asks for an unsplittable routing of the demands such that the maximum cumulated demand on any edge is minimized. Let LL be the value of such a solution. In the relaxed version of the problem, each demand can be split into two parts where the first part is routed clockwise while the second part is routed counter-clockwise. Denote with L∗L^* the maximum load of a minimum split routing solution. In a landmark paper, Schrijver, Seymour and Winkler [SSW98] showed that L≤L∗+1.5DL \leq L^* + 1.5D, where DD is the maximum demand value. They also found (implicitly) an instance of the Ring Loading Problem with L=L∗+1.01DL = L^* + 1.01D. Recently, Skutella [Sku16] improved these bounds by showing that L≤L∗+1914DL \leq L^* + \frac{19}{14}D, and there exists an instance with L=L∗+1.1DL = L^* + 1.1D. We contribute to this line of research by showing that L≤L∗+1.3DL \leq L^* + 1.3D. We also take a first step towards lower and upper bounds for small instances

    Free Energy Approach to the Formation of an Icosahedral Structure during the Freezing of Gold Nanoclusters

    Full text link
    The freezing of metal nanoclusters such as gold, silver, and copper exhibits a novel structural evolution. The formation of the icosahedral (Ih) structure is dominant despite its energetic metastability. This important phenomenon, hitherto not understood, is studied by calculating free energies of gold nanoclusters. The structural transition barriers have been determined by using the umbrella sampling technique combined with molecular dynamics simulations. Our calculations show that the formation of Ih gold nanoclusters is attributed to the lower free energy barrier from the liquid to the Ih phases compared to the barrier from the liquid to the face-centered-cubic crystal phases

    Global health: the importance of evidence-based medicine

    Get PDF
    Global health is a varied field that comprises research, evaluation and policy that, by its definition, also occurs in disparate locations across the world. This forum article is introduced by our guest editor of the Medicine for Global Health article collection, Gretchen Birbeck. Here, experts based across different settings describe their personal experiences of global health, discussing how evidence-based medicine in resource-limited settings can be translated into improved health outcomes
    • …
    corecore