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Abstract 

Thermoelectric properties of thick-films (60 m), which were prepared by a screen printing 

technique using p-type misfit-layered cobalt oxide Ca3Co4O9+ with Ag addition, have been 

studied. The screen-printed films were sintered in air at various temperatures ranging from 973 K 

to 1223 K. After each sintering process, crystal and microstructure analyses were carried out in 

order to determine an optimal sintering condition. The results show that thermoelectric properties 

of pure Ca3Co4O9+  thick-film are comparable with cold-isostatic-pressed (CIP) samples. We 

found that the maximum power factor was improved about 67% (0.3 mW/mK2) for a film with 

proper silver (Ag) metallic inclusions as compared to 0.18 mW/mK2 for the film of pure 

Ca3Co4O9+ under the same sintering condition at 1223 K for 2 h in air.  

 

Keywords: Misfit-layered cobaltite, thermoelectric oxide, power factor, 

nanoinclusion   
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INTRODUCTION 

 Thermoelectric generators, which convert heat directly into electricity in the presence of a 

temperature difference, provide a promising solution to the global challenges of finding new 

reliable, cleaner, and more environmentally friendly sources of energy.1-3 These devices have the 

potential to increase the utilization of industrial or home waste heat by recapturing a portion of the 

waste heat from these sources and generating electricity.2 At present, device conversion 

efficiencies are low (~5%)3, compared to other power generators from solar energy or another heat 

source1, and more importantly their manufacturing process using bulk thermoelectric elements is 

expensive and time consuming. Another problem is the difficulty in scaling up to mass-production 

by the conventional processing.  

 Screen-printing technology has been demonstrated as a cost-effective and simple method, 

which is suitable for mass-production of thermoelectric modules.4-6 An advantage of this 

technology is that it allows to control the dimensional factor, referring to the thickness (or length) 

of the thermoelectric elements.4 When the thickness of thermoelectric materials is reduced, the 

maximum amount of heat that can be pumped as the temperature difference between hot and cold 

sides substantially increases resulting from a high heat flux and low thermal resistance along the 

thin-direction.  

 In this work, we have employed a printing technique to prepare p-type thermoelectric thick-

films using misfit-layered cobaltite-based materials, which have been intensively investigated 

because of their good thermoelectric performance and their highly thermal and chemical stabilities 

even up to 1200 K in air.7-16 Thick-films of pure Ca3Co4O9+ material were fabricated and sintered 

at various temperatures ranging from 973 K up to 1223 K. Their microstructure and thermoelectric 

properties were investigated in order to determine an optimum sintering condition. Further 

investigations were focused on thick-films of Ca3Co4O9+ with various levels of Ag addition. A 

thick-film with a proper amount of Ag inclusions was found to exhibit a maximum power factor of 

0.3 mW/mK2, which is about 67% higher than a similar pure screen-printed Ca3Co4O9+ under the 

same sintering conditions at 1223 K for 2 h in air.         
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EXPERIMENTAL PROCEDURES 

Polycrystalline powder samples of Ca3-xAgxCo4O9+ (x = 0, 0.05, 0.1, and 0.15) were 

synthesized by solid-state reaction. The appropriate amounts of CaCO3 (99.5%), Co3O4 (99.7%) 

powders and AgNO3 (99.99%) solution were mixed by ball milling with ethanol for 36 h. The 

resulting mixture was dried and calcined at 1223 K for 24 h in air. Ca3-xAgxCo4O9+ inks, 

consisting of powder-dispersant-binder mixture were prepared and screen printed onto a 5 x 5 cm2, 

dense 290 μm thick Ce0.9Gd0.1O1.95 (CGO) substrate (KERAFOL). The screen printed samples 

were then sintered at 973 K, 1123 K, 1173 K and 1223 K in air for 1-2 h in order to determine an 

optimum sintering condition. For comparison, the powders after calcining at 1223 K in air for 24 h 

were pressed using cold-isostatic-pressed (CIP) technique under a pressure of 250 MPa during 1 

min. CIP-samples were then further sintered at 1223 K in air for another 24 h.  

The phase purity of the powders and the deposited layers on dense CGO substrate was checked 

by the X-ray diffraction (XRD) on a BrukerD8 diffractometer with Cu K radiation. The 

microstructures of the sintered thick-films were analyzed using a Zeiss Supra 35 scanning electron 

microscope (SEM) system. The in-plane electrical resistivity and thermoelectric power were 

measured simultaneously using an ULVAC-RIKO ZEM3 thermoelectric property measurement 

system in -0.9 bar helium (purity 99.999% with < 0.5 ppm residual oxygen).  

 

RESULTS AND DISCUSSION 

Figure 1 displays powder XRD patterns of Ca3-xAgxCo4O9+  (x = 0, x = 0.05, x = 0.10, and x = 

0.15), showing that most of the diffraction peaks are identical to the Ca3Co4O9+  phase with the 

JCPDS card (PDF #21-0139). Two additional XRD peaks at 2  38.1o and 44.3o were found to fit 

well with two the strongest peaks of Ag (PDF# 01-1167), which could also be observed even for 

composition with low Ag concentration such as x = 0.05. In addition, the intensity of these peaks 

increased with increasing Ag concentration, indicating that these peaks indeed belong to the 

metallic Ag. The existence of excess Ag suggests that silver most likely agglomerated as 

inclusions at grains boundaries or dispersed in the grains interior instead of doping at the Ca-site. 

XRD analysis of the print-screened layers after sintering also revealed that the films are pure phase 

of Ca3Co4O9+ with similar traces of metallic Ag. 
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Figure 2a-d shows SEM images for the fractured surfaces of pure sintered films Ca3Co4O9+ at 

793 K - 1 h, 1123 K - 1 h, 1173 K - 2 h, and 1223 K - 2 h, respectively. It is clear from Fig. 2 that 

the morphology of the films changed when the sintering temperature was increased from 973 K, 

1123 K, and 1173 K to 1223 K. For the film, which was sintered at 973 K for 1 h, the morphology 

looks as if the grains have just started sintering, i.e. many small grains surround the large ones, 

which are separated and poorly faceted (Fig. 2a). Moreover, it appears as if the adhesion between 

the substrate and the film is very poor, e.g. as illustrated by the air-gaps (Fig. 2a). With increasing 

sintering temperature e.g. to 1123 K - 1 h, the grains started growing and forming a plate-like 

morphology (Fig. 2b). The evolution of the microstructure became more pronounced with further 

increasing sintering temperature and time i.e. at 1173 K (Fig. 2c) and 1223 K for 2 h (Fig. 2d). In 

addition to the evolution of morphology, for the film sintered at 1223 K, it seems that the 

Ca3Co4O9+ grains began to be sintered together forming a connective structure (Fig. 2d). The 

thickness of the film after sintering at 1223 K for 2 h was determined by SEM to be about 60 μm.           

Figure 3a-d displays the SEM images taken from the fracture cross-sections of Ca3-

xAgxCo4O9+ thick-films, which were sintered at 1223 K for 2 h in air, with x = 0, 0.05, 0.10, and 

0.15, respectively. Although all investigated films exhibit a similar porous structure these films 

show some lamella-like grains, particularly the grains at the region close to the substrate surface. 

This lamella-like morphology looks more pronounced for the films containing Ag (Fig. 3b-d) than 

the one with pure Ca3Co4O9+ (Fig. 3a).  

In order to determine porosity of the sintered-films, SEM images from the polished cross-

section were performed for all the investigated samples, and shown in figure 4 is a SEM image of 

a typical Ca2.95Ag0.05Co4O9+ thick-film. The porosity was determined to be about 43% using 

“Simple Phase Analyzer” software to analyze the images by counting the black and grey pixels. 

There was no significant deference in porosity between the samples, indicating that all the thick-

films show a similar porous structure.       

Temperature dependence of the electrical resistivity for thick-films Ca3-xAgxCo3O9+ with x = 0, 

0.05, 0.10, and 0.15, sintered at 1223 K for 2 h in air are shown in figure 5. The data of the cold-

isostatic-pressed (CIP) pure Ca3Co4O9+ sample is also presented for comparison. Overall, the 

electrical resistivity of thick-film is comparable and slightly lower than that of the CIP-sample. 

Thick-film of pure Ca3Co4O9+ sample exhibited a higher electrical resistivity, probably due to the 

porous structure of the film as compared with the CIP-sample, which has a relative density about 
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76% of the theoretical density (i.e. a porosity of 24%). It is clearly shown from Fig. 5 that the 

electrical resistivity of all investigated samples exhibited opposite behavior in two temperature 

regions T < 600 K and T > 600 K. The resistivity of the samples below about 600 K tended to 

decrease with increasing temperature, while above 600 K the resistivity of the samples increased 

rapidly. This phenomenon could be related to the oxygen deficiency. At high temperatures (i.e. 

above 600 K), oxygen is probably released due to the porous structure under a low pressure of 

helium atmosphere. In the Ca3Co4O9+ system, the majority of the charge carriers are hole-type, as 

confirmed by the positive values of the Seebeck and Hall coefficients.13 Three types of valences of 

Co ions: Co2+, Co3+, and Co4+are supposed to exist in this system, and the concentration of Co4+ is 

responsible for the hole concentration.
15

 Taking the following formula into account 

2

94

2

3








OCoCa , due to charge neutrality the sum of valences of all compounds must be equal 

zero therefore should fulfill the following condition,   

                                                                  
2

6



                                                                     (1) 

where  is the average valence of Co. From formula (1), one can see that the average valence of 

Co will decrease if  is decreased, particularly when  < 0. The decrease in the average Co valence 

results in the decrease in the Co4+ content i.e. the hole concentration, and thus decease the 

electrical conductivity of the system. Since all samples were measured in vacuum with the 

presence of small amount of helium gas, the oxygen release is progressively increasing with 

increasing the temperature and thereby affects the hole Co4+ concentration, and the stability of 

Ca3Co4O9+ phase. It was also found in a complex cobalt oxide Sr0.7Y0.3CoO2.62 that the oxygen 

content starts decreasing rapidly in helium at a temperature of 100 degrees lower than in air17.  

As for Ca3Co4O9+ system, the loss of oxygen ion was observed to start at about 723 K18 in air. 

Moreover even under the condition where the Ca3Co4O9+ is still stable, the oxygen content 

systematically decreased with increasing temperature and decreasing oxygen pressure, as 

confirmed in the work16 by Shimoyama et al.. Notably, all the samples with Ag addition showed a 

lower value of electrical resistivity than the pure Ca3Co4O9+ sample at temperatures below 600 K.     

Figure 6 shows the Seebeck coefficient (S) as a function of temperature for all samples. In 

general, the Seebeck coefficient of all investigated samples increases with increasing temperature, 

and the S values are positive over the whole measured temperature range, indicating p-type 
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semiconducting materials. At temperatures below 600 K, S gradually increased, while it suddenly 

raised when the temperature is increased over 600 K. The rapidly increase of S in the temperature 

region above 600 K could be associated with the abruptly decrease in the hole concentration due to 

the oxygen deficiency at high temperatures aforementioned. Interestingly, among all investigated 

samples the Ca3-xAgxCo3O9+ with x = 0.05 thick-film showed the highest Seebeck coefficient over 

the whole measured temperature range. The enhanced Seebeck coefficient might be related to the 

formation of a fine-scale distribution of metallic Ag as nanoinclusions, the detailed microstructure 

of these films using HRTEM, STEM-EDX will be carried out in the future to identify the size and 

the distribution of these particles. The interfaces between the metallic nanoinclusion (Ag) and the 

semiconductor host (cobaltite) probably play a role both in blocking phonon transport and in 

favoring charge-carrier transport as observed in bulk samples.9  Theoretical calculations indicated 

that for any size of nanoinclusions the Seebeck coefficient always becomes larger than that of the 

inclusion-free system.19 This enhancement was explained by the strongly energy dependent 

scattering time of electrons at the interface between metallic inclusion and the semiconducting 

host matrix. However, for a higher Ag concentration, e.g. the sample at x = 0.15, the high Ag 

content could lead to the percolation or agglomeration of Ag particles causing a high electrical 

conductivity but also lowering the Seebeck coefficient by short-circuiting the thermoelectric 

voltage within the cobaltite grains.20 The observation of the enhanced Seebeck coefficient on the 

thick-film with x = 0.05 is in good agreement with the reported bulk nanostructured misfit-layered 

cobaltite on the same Ag concentration9 and indicate the existence of fine Ag particles.  

Power factor (S2/) of the thick-films Ca3-xAgxCo3O9+ with x = 0, 0.05, 0.10, and 0.15 as well 

as the CIP-sample as a function of temperature is presented in figure 7. The maximum power 

factor were found at 612 K to be 0.18, 0.3, 0.19, and 0.23 mW/mK2 for the samples x = 0, 0.05, 

0.10, 0.15, respectively. It is clear from Fig. 7 that the highest measured power factor is belong to 

the x = 0.05 thick-film, showing a value of about 67% higher than the film of pure Ca3Co4O9+.  

 

CONCLUSIONS 

In summary, we have investigated the high temperature thermoelectric properties and 

microstructure of a series of Ca3-xAgxCo3O9+ thick-films for 0 ≤ x ≤ 0.15, which were prepared by 

a simple and low cost process – screen printing. The observations of the microstructure indicated 
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that the films sintered at 1223 K for 2 h in air have porous structure with “plate-like” and “lamella-

like” grains morphology. At temperatures below 612 K, the power factor was improved for the 

samples with Ag addition mainly due to the reduction of the electrical resistivity. Strikingly, power 

factor for the x = 0.05 film attained at 612 K a maximum power factor value of 0.3 mW/mK2, 

which is about 67% higher than the film of pure Ca3Co4O9+. This initial observation is promising 

for further investigations such as the thermal conductivity measurements to determine the figure-

of-merit, and the improvement of ZT through optimizing material composition. 

     

ACKNOWLEDGEMENTS 

The authors would like to thank the Programme Commission for Energy and Environment 

(EMNi), The Danish Research and Innovations (Project # 10-093971) for sponsoring the OTE-

POWER research work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 

REFERENCES 

1. J. Karni,  Nat. Mater. 10, 481 (2011). doi:10.1038/nmat3057. 

2. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen and G.J. Snyder, Nature. 473, 66 (2011). 

doi:10.1038/nature09996. 

3. D. Kraemer, B. Poudel, H-P. Feng, J.C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. 

Muto, K. McEnaney, M. Chiesa, Z. Ren and G. Chen, Nat. Mater. 10 [7], 532 (2011). 

doi:10.1038/nmat3013. 

4. T. Ohta, T. Kajikawa and Y. Kumashiro, Electr. Eng. Jpn. 110 [4], 14 (1990). 

doi:10.1002/eej.4391100402. 

5. H.B. Lee, H.J. Yang, J.H. We, K. Kim, K.C. Choi and B.J. Cho, J. Electron. Mater. 40 [5], 

615 (2011).  

6. H.B. Lee, J.H. We, H.J. Yang, K. Kim, K.C. Choi and B.J. Cho, Thin Solid Films 519, 5441 

(2011). doi:10.1016/j.tsf.2011.03.031. 

7. G. D. Tang, H.H. Guo, T. Yang, D.W. Zhang, X.N. Xu, L.Y. Wang, Z.H. Wang, H.H. Wen, 

Z.D. Zhang and Y.W. Du, Appl. Phys. Lett. 98, 202109 (2011). doi:10.1063/1.3592831. 

8. K. Ahmad and A. Lowe, J. Am. Ceram. Soc. 94 [2] 611 (2011). doi:10.1111/j.1551-

2916.2010.04106.x. 

9. N. V. Nong, N. Pryds, S. Linderoth and M. Ohtaki, Adv. Mater. 23 [21], 2484 (2011). 

doi:10.1002/adma.201004782. 

10. N. V. Nong, S. Yanagiya, S. Monica, N. Pryds and M. Ohtaki, J. Electron. Mater. 40 [5], 716 

(2011). doi:10.1007/s11664-011-1524-1. 

11. N. V. Nong, C. J. Liu and M. Ohtaki, J. Alloys Compd. 509, 977 (2011). 

doi:10.1016/j.jallcom.2010.09.150.  

12. C.J. Liu, Y.C. Huang, N. V. Nong, Y.L. Liu and V. Petŕićek, J. Electron. Mater. 40 [5], 1042 

(2011). doi:10.1007/s11664-011-1527-y. 

13. N.V. Nong, C-J. Liu and M. Ohtaki, J. Alloys Compd. 491, 53 (2010). 

doi:10.1016/j.jallcom.2009.11.009. 

14. Y. Wang, Y. Sui, J. Cheng, X. Wang, W. Su, J. Alloys Compd. 477, 817 (2009). 

doi:10.1016/j.jallcom.2008.10.162. 

15. D. Wang, L. Cheng, Q. Yao and J. Li, Solid State Comm. 129, 615 (2004). 

doi:10.1016/j.ssc.2003.11.045. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



9 

16. J. Shimoyama, S. Horii, K. Otzschi, M. Sano and K. Kishio, Jpn. J. Appl. Phys. 42, L194 

(2003). doi:10.1143/JJAP.42.L194.  

17. S.Ya. Istomin, J. Grins, G.Svensson, O.A. Drozhzhin, V.L. Kozhevnikov, E.V. Antipov and 

J.P. Attfield, Chem. Mater. 15, 4012 (2003). doi:10.1021/cm034263e. 

18. J.D. Zhou, L.R. Pederson, E. Thomsen, Z. Nie and G. Coffey, Electrochem. Solid-State Lett. 

12 [2], F1 (2009). doi:10.1149/1.3039948. 

19. S.V. Faleev, F. Leonard, Phys. Rev. B 77, 214304 (2008). doi:10.1103/PhysRevB.77.214304. 

20. M. Mikami, N. Ando, R. Funahashi, J. Solid State Chem. 178, 2186 (2005). 

doi:10.1016/j.jssc.2005.04.027. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10 

FIGURE CAPTIONS 

 

Fig. 1. X-ray powder diffraction patterns at room temperature for Ca3-xAgxCo3O9+ with x = 0, 

0.05, 0.10, and 0.15 after calcining at 1223 K for 24 h in air. 

 

Fig. 2. SEM images of the fractured surfaces of pure Ca3Co4O9+ thick-film, as sintered in air at 

973 K for 1 h (a), 1123 K for 1 h (b), 1173 K for 2 h (c), and 1223 K for 2 h (d). 

 

Fig. 3. SEM images of the fractured surfaces of Ca3-xAgxCo3O9+ thick-films after sintering at 1223 

K for 2 h in air: (a) is for x = 0, (b) for x = 0.05, (c) for x = 0.10, and (d) for x = 0.15. 

 

Fig. 4. SEM image of the polished cross-section of a typical Ca2.95Ag0.05Co4O9+ thick-film.  

 

Fig. 5. Temperature dependence of the electrical conductivity for Ca3-xAgxCo3O9+ thick-films with 

x = 0, 0.05, 0.10, and 0.15 after sintering at 1223 K for 2 h in air, and the CIP-sample after 

sintering under the same conditions for 24 h.   

 

Fig. 6. Temperature dependence of the Seebeck coefficient for Ca3-xAgxCo3O9+ thick-films with x 

= 0, 0.05, 0.10, and 0.15 and the CIP-sample. 

 

Fig. 7. Temperature dependence of the power factor for Ca3-xAgxCo3O9+ thick-films with x = 0, 

0.05, 0.10, and 0.15 and the CIP-sample.  
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