17 research outputs found

    ELECTRO-RHEOLOGICAL FLUIDIC ACTUATORS FOR HAPTIC VEHICULAR INSTRUMENT CONTROLS

    No full text
    Force-feedback mechanisms have been designed to simplify and enhance the human-vehicle interface. The increase in secondary controls within vehicle cockpits has created a desire for a simpler, more efficient humanvehicle interface. By consolidating various controls into a single, haptic feedback control device, information can be transmitted to the operator, without requiring the driver’s visual attention. In this paper Electro-Rheological Fluids (ERF) based actuated mechanisms are presented that provide haptic feedback. ERFs are liquids that respond mechanically to electric fields by changing their properties, such as viscosity and shear stress electroactively. Using the electrically controlled rheological properties of ERFs, we developed haptic devices that can resist human operator forces in a controlled and tunable fashion. The design of two types of ERF-based actuators and joystick is presented in detail. Their analytical model is derived, parametric analysis is performed, and experimental systems and data are presented.

    Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately

    No full text
    Persistent dendritic spine enlargement is associated with stable long-term potentiation (LTP), and the latter is thought to underlie long-lasting memories. Extracellular proteolytic remodeling of the synaptic microenvironment could be important for such plasticity, but whether or how proteolytic remodeling contributes to persistent modifications in synapse structure and function is unknown. Matrix metalloproteinase-9 (MMP-9) is an extracellular protease that is activated perisynaptically after LTP induction and required for LTP maintenance. Here, by monitoring spine size and excitatory postsynaptic potentials (EPSPs) simultaneously with combined 2-photon time-lapse imaging and whole-cell recordings from hippocampal neurons, we find that MMP-9 is both necessary and sufficient to drive spine enlargement and synaptic potentiation concomitantly. Both structural and functional MMP-driven forms of plasticity are mediated through ÎČ1-containing integrin receptors, are associated with integrin-dependent cofilin inactivation within spines, and require actin polymerization. In contrast, postsynaptic exocytosis and protein synthesis are both required for MMP-9-induced potentiation, but not for initial MMP-9-induced spine expansion. However, spine expansion becomes unstable when postsynaptic exocytosis or protein synthesis is blocked, indicating that the 2 forms of plasticity are expressed independently but require interactions between them for persistence. When MMP activity is eliminated during theta-stimulation-induced LTP, both spine enlargement and synaptic potentiation are transient. Thus, MMP-mediated extracellular remodeling during LTP has an instructive role in establishing persistent modifications in both synapse structure and function of the kind critical for learning and memory

    Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition

    Get PDF
    Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo)phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13−/− mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13−/− mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism
    corecore