303 research outputs found

    Virtual knot groups and almost classical knots

    Full text link
    We define a group-valued invariant of virtual knots and relate it to various other group-valued invariants of virtual knots, including the extended group of Silver-Williams and the quandle group of Manturov and Bardakov-Bellingeri. A virtual knot is called almost classical if it admits a diagram with an Alexander numbering, and in that case we show that the group factors as a free product of the usual knot group and Z. We establish a similar formula for mod p almost classical knots, and we use these results to derive obstructions to a virtual knot K being mod p almost classical. Viewed as knots in thickened surfaces, almost classical knots correspond to those that are homologically trivial. We show they admit Seifert surfaces and relate their Alexander invariants to the homology of the associated infinite cyclic cover. We prove the first Alexander ideal is principal, recovering a result first proved by Nakamura et al. using different methods. The resulting Alexander polynomial is shown to satisfy a skein relation, and its degree gives a lower bound for the Seifert genus. We tabulate almost classical knots up to 6 crossings and determine their Alexander polynomials and virtual genus.Comment: 44 page

    Appropriate Threshold Level of Inflation for Economic Growth: Evidence from the Three Founding EAC Countries

    Get PDF
    This paper empirically estimated threshold level of inflation, which is conducive for economic growth in the three founding EAC countries, Kenya, Tanzania and Uganda using panel data set for the period 1970 to 2013. The non-linear quadratic model was used to estimate the threshold level or the turning point beyond which inflation exerts a negative impact on economic growth. To examine the inflation-growth relationship other moderating variables were included in the model. It was found that credit to GDP ratio, degree of openness of the economy and foreign direct investment flows to EAC member states have significant and positive impact on growth. In determining threshold level of inflation for the three EAC member states, regression results of the random effect model establish that the average rate of inflation beyond 8.46 percent has negative and significant impact on economic growth. For individual countries, findings from the Seemingly Unrelated Regression (SUR), which treats each country separately, indicate that the optimal levels of inflation for Kenya, Tanzania and Uganda are 6.77 percent, 8.80 percent and 8.41 percent, respectively, beyond which inflation starts exerting cost on economic growth. The implication for monetary policy is that policy makers in the EAC member countries need to continue putting effort in achieving and maintaining single-digit level of inflation to support economic growth

    Roles of TRPV1 and neuropeptidergic receptors in dorsal root reflex-mediated neurogenic inflammation induced by intradermal injection of capsaicin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute cutaneous neurogenic inflammation initiated by activation of transient receptor potential vanilloid-1 (TRPV<sub>1</sub>) receptors following intradermal injection of capsaicin is mediated mainly by dorsal root reflexes (DRRs). Inflammatory neuropeptides are suggested to be released from primary afferent nociceptors participating in inflammation. However, no direct evidence demonstrates that the release of inflammatory substances is due to the triggering of DRRs and how activation of TRPV<sub>1 </sub>receptors initiates neurogenic inflammation via triggering DRRs.</p> <p>Results</p> <p>Here we used pharmacological manipulations to analyze the roles of TRPV<sub>1 </sub>and neuropeptidergic receptors in the DRR-mediated neurogenic inflammation induced by intradermal injection of capsaicin. The degree of cutaneous inflammation in the hindpaw that followed capsaicin injection was assessed by measurements of local blood flow (vasodilation) and paw-thickness (edema) of the foot skin in anesthetized rats. Local injection of capsaicin, calcitonin gene-related peptide (CGRP) or substance P (SP) resulted in cutaneous vasodilation and edema. Removal of DRRs by either spinal dorsal rhizotomy or intrathecal administration of the GABA<sub>A </sub>receptor antagonist, bicuculline, reduced dramatically the capsaicin-induced vasodilation and edema. In contrast, CGRP- or SP-induced inflammation was not significantly affected after DRR removal. Dose-response analysis of the antagonistic effect of the TRPV<sub>1 </sub>receptor antagonist, capsazepine administered peripherally, shows that the capsaicin-evoked inflammation was inhibited in a dose-dependent manner, and nearly completely abolished by capsazepine at doses between 30–150 μg. In contrast, pretreatment of the periphery with different doses of CGRP<sub>8–37 </sub>(a CGRP receptor antagonist) or spantide I (a neurokinin 1 receptor antagonist) only reduced the inflammation. If both CGRP and NK<sub>1 </sub>receptors were blocked by co-administration of CGRP<sub>8–37 </sub>and spantide I, a stronger reduction in the capsaicin-initiated inflammation was produced.</p> <p>Conclusion</p> <p>Our data suggest that 1) the generation of DRRs is critical for driving the release of neuropeptides antidromically from primary afferent nociceptors; 2) activation of TRPV<sub>1 </sub>receptors in primary afferent nociceptors following intradermal capsaicin injection initiates this process; 3) the released CGRP and SP participate in neurogenic inflammation.</p

    Upper-Room Ultraviolet Light and Negative Air Ionization to Prevent Tuberculosis Transmission

    Get PDF
    Background Institutional tuberculosis (TB) transmission is an important public health problem highlighted by the HIV/AIDS pandemic and the emergence of multidrug- and extensively drug-resistant TB. Effective TB infection control measures are urgently needed. We evaluated the efficacy of upper-room ultraviolet (UV) lights and negative air ionization for preventing airborne TB transmission using a guinea pig air-sampling model to measure the TB infectiousness of ward air. Methods and Findings For 535 consecutive days, exhaust air from an HIV-TB ward in Lima, Perú, was passed through three guinea pig air-sampling enclosures each housing approximately 150 guinea pigs, using a 2-d cycle. On UV-off days, ward air passed in parallel through a control animal enclosure and a similar enclosure containing negative ionizers. On UV-on days, UV lights and mixing fans were turned on in the ward, and a third animal enclosure alone received ward air. TB infection in guinea pigs was defined by monthly tuberculin skin tests. All guinea pigs underwent autopsy to test for TB disease, defined by characteristic autopsy changes or by the culture of Mycobacterium tuberculosis from organs. 35% (106/304) of guinea pigs in the control group developed TB infection, and this was reduced to 14% (43/303) by ionizers, and to 9.5% (29/307) by UV lights (both p < 0.0001 compared with the control group). TB disease was confirmed in 8.6% (26/304) of control group animals, and this was reduced to 4.3% (13/303) by ionizers, and to 3.6% (11/307) by UV lights (both p < 0.03 compared with the control group). Time-to-event analysis demonstrated that TB infection was prevented by ionizers (log-rank 27; p < 0.0001) and by UV lights (log-rank 46; p < 0.0001). Time-to-event analysis also demonstrated that TB disease was prevented by ionizers (log-rank 3.7; p = 0.055) and by UV lights (log-rank 5.4; p = 0.02). An alternative analysis using an airborne infection model demonstrated that ionizers prevented 60% of TB infection and 51% of TB disease, and that UV lights prevented 70% of TB infection and 54% of TB disease. In all analysis strategies, UV lights tended to be more protective than ionizers. Conclusions Upper-room UV lights and negative air ionization each prevented most airborne TB transmission detectable by guinea pig air sampling. Provided there is adequate mixing of room air, upper-room UV light is an effective, low-cost intervention for use in TB infection control in high-risk clinical settings

    Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment

    Get PDF
    Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers’ or consumers’ health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA

    Professional and Home-Made Face Masks Reduce Exposure to Respiratory Infections among the General Population

    Get PDF
    Governments are preparing for a potential influenza pandemic. Therefore they need data to assess the possible impact of interventions. Face-masks worn by the general population could be an accessible and affordable intervention, if effective when worn under routine circumstances.We assessed transmission reduction potential provided by personal respirators, surgical masks and home-made masks when worn during a variety of activities by healthy volunteers and a simulated patient.All types of masks reduced aerosol exposure, relatively stable over time, unaffected by duration of wear or type of activity, but with a high degree of individual variation. Personal respirators were more efficient than surgical masks, which were more efficient than home-made masks. Regardless of mask type, children were less well protected. Outward protection (mask wearing by a mechanical head) was less effective than inward protection (mask wearing by healthy volunteers).Any type of general mask use is likely to decrease viral exposure and infection risk on a population level, in spite of imperfect fit and imperfect adherence, personal respirators providing most protection. Masks worn by patients may not offer as great a degree of protection against aerosol transmission
    corecore