114 research outputs found

    DNA methylation in ATRA-treated leukemia cell lines lacking a PML-RAR chromosome translocation

    Get PDF
    A deficient retinoic acid signaling has been suggested to be an important cause of the clinical inefficacy of all-trans retinoic acid (ATRA) therapy in nonpromyelocytic (non-PML) forms of acute myeloid leukemia (AML). The general aim of the present work was to explore novel ways to take advantage of the anti-leukemic potential of ATRA, and, specifically, to search for a synergism between ATRA and epigenetic drugs. Because previous reports have found no major influence of ATRA on DNA methylation, we investigated whether ATRA-mediated differentiation of the U937 and HL-60 AML cell lines, both lacking a PML-retinoic acid receptor (RAR) fusion product, is accompanied by early-appearing and weak changes in CpG methylation. We report that in HL-60 cells, by using a highly quantitative analysis of a set of genes found to be abnormally expressed in AML, polymerase chain reaction (PCR)-amplified p16 gene promoter molecules (each with 15 CpG sites), exhibited a CpG methylation level of 0-4% in untreated cells, which increased to 4-21% after treatment with ATRA for seven days. In contrast to HL-60 cells, U937 cells exhibited a very high CpG methylation level in p16, and ATRA did not influence the promoter methylation of this gene. In the total CCGG sites of the genome, analysed using a methylation-sensitive restriction enzyme, CpG methylation was significantly lower in ATRA-treated HL-60 (p<0.01) and U937 cells (p<0.05) than in controls. Taken together, our findings show that ATRA can influence DNA methylation, and suggest that future research should investigate whether epigenetic modulation may evoke a clinical effect of ATRA in leukemia

    Intracellular origin and ultrastructure of platelet-derived microparticles

    Get PDF
    © 2017 International Society on Thrombosis and Haemostasis Essentials Platelet microparticles play a major role in pathologies, including hemostasis and thrombosis. Platelet microparticles have been analyzed and classified based on their ultrastructure. The structure and intracellular origin of microparticles depend on the cell-activating stimulus. Thrombin-treated platelets fall apart and form microparticles that contain cellular organelles. Summary: Background Platelet-derived microparticles comprise the major population of circulating blood microparticles that play an important role in hemostasis and thrombosis. Despite numerous studies on the (patho)physiological roles of platelet-derived microparticles, mechanisms of their formation and structural details remain largely unknown. Objectives Here we studied the formation, ultrastructure and composition of platelet-derived microparticles from isolated human platelets, either quiescent or stimulated with one of the following activators: arachidonic acid, ADP, collagen, thrombin or calcium ionophore A23187. Methods Using flow cytometry, transmission and scanning electron microscopy, we analyzed the intracellular origin, structural diversity and size distributions of the subcellular particles released from platelets. Results The structure, dimensions and intracellular origin of microparticles depend on the cell-activating stimulus. The main structural groups include a vesicle surrounded by one thin membrane or multivesicular structures. Thrombin, unlike other stimuli, induced formation of microparticles not only from the platelet plasma membrane and cytoplasm but also from intracellular structures. A fraction of these vesicular particles having an intracellular origin contained organelles, such as mitochondria, glycogen granules and vacuoles. The size of platelet-derived microparticles depended on the nature of the cell-activating stimulus. Conclusion The results obtained provide a structural basis for the qualitative differences of various platelet activators, for specific physiological and pathological effects of microparticles, and for development of advanced assays

    Single-Molecule Interactions of a Monoclonal Anti-DNA Antibody with DNA

    Get PDF
    © 2016, Springer Science+Business Media New York.Interactions of DNA with proteins are essential for key biological processes and have both a fundamental and practical significance. In particular, DNA binding to anti-DNA antibodies is a pathogenic mechanism in autoimmune pathology, such as systemic lupus erythematosus. Here we measured at the single-molecule level binding and forced unbinding of surface-attached DNA and a monoclonal anti-DNA antibody MRL4 from a lupus erythematosus mouse. In optical trap-based force spectroscopy, a microscopic antibody-coated latex bead is trapped by a focused laser beam and repeatedly brought into contact with a DNA-coated surface. After careful discrimination of non-specific interactions, we showed that the DNA-antibody rupture force spectra had two regimes, reflecting formation of weaker (20–40 pN) and stronger (>40 pN) immune complexes that implies the existence of at least two bound states with different mechanical stability. The two-dimensional force-free off-rate for the DNA-antibody complexes was ∼2.2 × 10−3 s−1, the transition state distance was ∼0.94 nm, the apparent on-rate was ∼5.26 s−1, and the stiffness of the DNA-antibody complex was characterized by a spring constant of 0.0021 pN/nm, suggesting that the DNA-antibody complex is a relatively stable, but soft and deformable macromolecular structure. The stretching elasticity of the DNA molecules was characteristic of single-stranded DNA, suggesting preferential binding of the MRL4 antibody to one strand of DNA. Collectively, the results provide fundamental characteristics of formation and forced dissociation of DNA-antibody complexes that help to understand principles of DNA-protein interactions and shed light on the molecular basis of autoimmune diseases accompanied by formation of anti-DNA antibodies

    Combined activities of JNK1 and JNK2 in hepatocytes protect against toxic liver injury

    Get PDF
    Background & Aims: c-Jun N-terminal kinase (JNK)1 and JNK2 are expressed in hepatocytes and have overlapping and distinct functions. JNK proteins are activated, via phosphorylation, in response to acetaminophen- or CCl4-induced liver damage; the level of activation correlates with the degree of injury. SP600125, a JNK inhibitor, has been reported to block acetaminophen-induced liver injury. We investigated the role of JNK in drug-induced liver injury (DILI) in liver tissues from patients and in mice with genetic deletion of JNK in hepatocytes. Methods: We studied liver sections from patients with DILI (due to acetaminophen, phenprocoumon, non-steroidal anti-inflammatory drugs or autoimmune hepatitis), or patients without acute liver failure (controls), collected from a DILI Biobank in Germany. Levels of total and activated (phosphorylated) JNK were measured by immunohistochemistry and western blotting. Mice with hepatocyte-specific deletion ofJnk1 (Jnk1Δhepa) or combination of Jnk1 and Jnk2 (JnkΔhepa), as well as Jnk1-floxed C57BL/6 (control) mice, were given injections of CCl4 (to induce fibrosis) or acetaminophen (to induce toxic liver injury). We performed gene expression microarray, and phosphoproteomic analyses to determine mechanisms of JNK activity in hepatocytes.  Results: Liver samples from DILI patients contained more activated JNK, predominantly in nuclei of hepatocytes and in immune cells, than healthy tissue. Administration of acetaminophen to JnkΔhepa mice produced a greater level of liver injury than that observed in Jnk1Δhepa or control mice, based on levels of serum markers and microscopic and histologic analysis of liver tissues. Administration of CCl4 also induced stronger hepatic injury in JnkΔhepa mice, based on increased inflammation, cell proliferation, and fibrosis progression, compared to Jnk1Δhepa or control mice. Hepatocytes from JnkΔhepamice given acetaminophen had an increased oxidative stress response, leading to decreased activation of AMPK, total protein AMPK levels, and pJunD and subsequent necrosis. Administration of SP600125 before or with acetaminophen protected JnkΔhepaand control mice from liver injury. Conclusions: In hepatocytes, JNK1 and JNK2 appear to have combined effects in protecting mice from CCl4- and acetaminophen-induced liver injury. It is important to study the tissue-specific functions of both proteins, rather than just JNK1, in the onset of toxic liver injury. JNK inhibition with SP600125 shows off-target effects

    Loss of c-Jun N-terminal Kinase 1 and 2 Function in Liver Epithelial Cells Triggers Biliary Hyperproliferation Resembling Cholangiocarcinoma

    Get PDF
    Targeted inhibition of the c-Jun N-terminal kinases (JNKs) has shown therapeutic potential in intrahepatic cholangiocarcinoma (CCA)-related tumorigenesis. However, the cell-type-specific role and mechanisms triggered by JNK in liver parenchymal cells during CCA remain largely unknown. Here, we aimed to investigate the relevance of JNK1 and JNK2 function in hepatocytes in two different models of experimental carcinogenesis, the dethylnitrosamine (DEN) model and in nuclear factor kappa B essential modulator (NEMO)(hepatocyte-specific knockout (Deltahepa)) mice, focusing on liver damage, cell death, compensatory proliferation, fibrogenesis, and tumor development. Moreover, regulation of essential genes was assessed by reverse transcription polymerase chain reaction, immunoblottings, and immunostainings. Additionally, specific Jnk2 inhibition in hepatocytes of NEMO(Deltahepa)/JNK1(Deltahepa) mice was performed using small interfering (si) RNA (siJnk2) nanodelivery. Finally, active signaling pathways were blocked using specific inhibitors. Compound deletion of Jnk1 and Jnk2 in hepatocytes diminished hepatocellular carcinoma (HCC) in both the DEN model and in NEMO(Deltahepa) mice but in contrast caused massive proliferation of the biliary ducts. Indeed, Jnk1/2 deficiency in hepatocytes of NEMO(Deltahepa) (NEMO(Deltahepa)/JNK(Deltahepa)) animals caused elevated fibrosis, increased apoptosis, increased compensatory proliferation, and elevated inflammatory cytokines expression but reduced HCC. Furthermore, siJnk2 treatment in NEMO(Deltahepa)/JNK1(Deltahepa) mice recapitulated the phenotype of NEMO(Deltahepa)/JNK(Deltahepa) mice. Next, we sought to investigate the impact of molecular pathways in response to compound JNK deficiency in NEMO(Deltahepa) mice. We found that NEMO(Deltahepa)/JNK(Deltahepa) livers exhibited overexpression of the interleukin-6/signal transducer and activator of transcription 3 pathway in addition to epidermal growth factor receptor (EGFR)-rapidly accelerated fibrosarcoma (Raf)-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) cascade. The functional relevance was tested by administering lapatinib, which is a dual tyrosine kinase inhibitor of erythroblastic oncogene B-2 (ErbB2) and EGFR signaling, to NEMO(Deltahepa)/JNK(Deltahepa) mice. Lapatinib effectively inhibited cystogenesis, improved transaminases, and effectively blocked EGFR-Raf-MEK-ERK signaling. Conclusion: We define a novel function of JNK1/2 in cholangiocyte hyperproliferation. This opens new therapeutic avenues devised to inhibit pathways of cholangiocarcinogenesis

    УПРАВЛІННЯ ФІНАНСОВИМИ РЕЗЕРВАМИ ПРИ ОПТИМІЗАЦІЇ ФІНАНСОВИХ ПОТОКІВ ПІДПРИЄМСТВА

    Get PDF
    Уточнена сутність фінансового резерву промислового підприємства. Встановлені характеристики функціонування системи управління фінансовими потоками з точки зору використання резерву на основі використання положень теорії масового обслуговування.The essence of financial reserve of industrial enterprise was concretized. The characteristics of performance of system of financial flows servicing on the basis of theory of queues with usage of financial reserves were defined

    β-Adrenergic Inhibition of Contractility in L6 Skeletal Muscle Cells

    Get PDF
    The β-adrenoceptors (β-ARs) control many cellular processes. Here, we show that β-ARs inhibit calcium depletion-induced cell contractility and subsequent cell detachment of L6 skeletal muscle cells. The mechanism underlying the cell detachment inhibition was studied by using a quantitative cell detachment assay. We demonstrate that cell detachment induced by depletion of extracellular calcium is due to myosin- and ROCK-dependent contractility. The β-AR inhibition of L6 skeletal muscle cell detachment was shown to be mediated by the β2-AR and increased cAMP but was surprisingly not dependent on the classical downstream effectors PKA or Epac, nor was it dependent on PKG, PI3K or PKC. However, inhibition of potassium channels blocks the β2-AR mediated effects. Furthermore, activation of potassium channels fully mimicked the results of β2-AR activation. In conclusion, we present a novel finding that β2-AR signaling inhibits contractility and thus cell detachment in L6 skeletal muscle cells by a cAMP and potassium channel dependent mechanism

    Activation of the Unfolded Protein Response (UPR) Is Associated with Cholangiocellular Injury, Fibrosis and Carcinogenesis in an Experimental Model of Fibropolycystic Liver Disease

    Get PDF
    Fibropolycystic liver disease is characterized by hyperproliferation of the biliary epithelium and the formation of multiple dilated cysts, a process associated with unfolded protein response (UPR). In the present study, we aimed to understand the mechanisms of cyst formation and UPR activation in hepatocytic c-Jun N-terminal kinase 1/2 (Jnk1/2) knockout mice. Floxed JNK1/2 (Jnkf/f) and Jnk∆hepa animals were sacrificed at different time points during progression of liver disease. Histological examination of specimens evidenced the presence of collagen fiber deposition, increased α-smooth muscle actin (αSMA), infiltration of CD45, CD11b and F4/80 cells and proinflammatory cytokines (Tnf, Tgfβ1) and liver injury (e.g., ALT, apoptosis and Ki67-positive cells) in Jnk∆hepa compared with Jnkf/f livers from 32 weeks of age. This was associated with activation of effectors of the UPR, including BiP/GRP78, CHOP and spliced XBP1. Tunicamycin (TM) challenge strongly induced ER stress and fibrosis in Jnk∆hepa animals compared with Jnkf/f littermates. Finally, thioacetamide (TAA) administration to Jnk∆hepa mice induced UPR activation, peribiliary fibrosis, liver injury and markers of biliary proliferation and cholangiocarcinoma (CCA). Orthoallografts of DEN/CCl4-treated Jnk∆hepa liver tissue triggered malignant CCA. Altogether, these results suggest that activation of the UPR in conjunction with fibrogenesis might trigger hepatic cystogenesis and early stages of CCA

    Shikonin Increases Glucose Uptake in Skeletal Muscle Cells and Improves Plasma Glucose Levels in Diabetic Goto-Kakizaki Rats

    Get PDF
    Glucose is the most common substrate for energy metabolism. Despite the varying demands for glucose, the body needs to regulate its internal environment and maintain a constant and stable condition. Glucose homeostasis requires harmonized interaction between several tissues, achieving equilibrium between glucose output and uptake. In this thesis we aimed to investigate factors modulating glucose homeostasis in a rat model of type 2 diabetes, the Goto-Kakizaki (GK) rat. In addition, we investigated sex differences in hepatic carbohydrate and lipid metabolism in healthy rats. In Paper I, three-week but not three-day treatment with a Southeast Asian herb, Gynostemma pentaphyllum (GP), significantly reduced plasma glucose (PG) levels in GK rats. An intra-peritoneal glucose tolerance test (IPGTT) was significantly improved in GP-treated compared to placebo-treated group. In the GP treated rats, the glucose response in an intra-peritoneal pyruvate tolerance test was significantly lower, indicating decreased gluconeogenesis, and hepatic glucose output (HGO) was reduced. GP-treatment significantly reduced hepatic glycogen content, but not glycogen synthase activity. The study provides evidence that the GP extract exerted anti-diabetic effect in GK rats, reducing PG levels and HGO, suggesting that GP improves the hepatic insulin sensitivity by suppressing gluconeogenesis. In Paper II, shikonin, a naphthoquinone derived from the Chinese plant Lithospermum erythrorhizon, increased glucose uptake in L6 myotubes, but did not phosphorylate Akt. Furthermore we found no evidence for the involvement of AMP activated protein kinase (AMPK) in shikonin induced glucose uptake. Shikonin increased the intracellular levels of calcium in these cells and stimulated the translocation of GLUT4 from intracellular vesicles to the cell surface in L6 myotubes. In GK rats treated with shikonin once daily for 4 days, PG levels were significantly decreased. In an insulin sensitivity test, the absolute PG levels were significantly lower in the shikonin-treated rats. These findings suggest that shikonin increases glucose uptake in muscle cells via an insulin-independent pathway dependent on calcium. In Paper III, GK and control Wistar rats were injected daily for up to 4 weeks with either a non-hematopoietic erythropoietin analog ARA290 or with placebo. PG levels in GK but not Wistar rats were significantly lower in ARA290-treated compared to placebo. After 2 and 4 weeks, the IPGTT was significantly improved in ARA290 treated GK rats. In insulin and pyruvate tolerance tests, glucose responses were similar in ARA290 and placebo groups. In isolated GK rat islets, glucose-stimulated insulin release was two-fold higher and islet intracellular calcium concentrations in response to several secretagogues were significantly higher in ARA290-treated than in placebo-treated GK rats. These findings indicate that treatment with ARA290 significantly improved glucose tolerance in diabetic GK rats, most likely due to improvement of insulin release. In Paper IV, sex differences in hepatic carbohydrate and lipid metabolism were characterized in healthy rats. No sex-differences were observed regarding hepatic triglyceride content, fatty acid oxidation rates or insulin sensitivity. Male rats had higher ratios of insulin to glucagon levels, increased hepatic glycogen content, a lower degree of AMPK phosphorylation, a higher rate of glucose production and higher expression levels of gluconeogenic genes, as compared to female rats. A sex-dependent response to mild starvation was observed with males being more sensitive. In conclusion, sex-differences reflect a higher capacity of the healthy male rat liver to respond to increased energy demands. Key words: glucose homeostasis, type 2 diabetes, GK rats, L6 myotubes, hepatic glucose output, insulin sensitivity, sex differences
    corecore