6,472 research outputs found

    Distinguishing standard reionization from dark matter models

    Full text link
    The Wilkinson Microwave Anisotropy Probe (WMAP) experiment has detected reionization at the 5.5σ5.5 \sigma level and has reported a mean optical depth of 0.088±0.0150.088 \pm 0.015. A powerful probe of reionization is the large-angle EEEE polarization power spectrum, which is now (since the first five years of data from WMAP) cosmic variance limited for 2l62\le l \le6. Here we consider partial reionization caused by WIMP dark matter annihilation, and calculate the expected polarization power spectrum. We compare the dark matter models with a standard 2-step reionization theory, and examine whether the models may be distinguished using current, and future CMB observations. We consider dark matter annihilation at intermediate redshifts (z<60z<60) due to halos, as well as annihilation at higher redshifts due to free particles. In order to study the effect of high redshift dark matter annihilation on CMB power spectra, it is essential to include the contribution of residual electrons (left over from recombination) to the ionization history. Dark matter halos at redshifts z<60z<60 influence the low multipoles l<20l<20 in the EEEE power spectrum, while the annihilation of free particle dark matter at high redshifts z>100z>100 mainly affects multipoles l>10l>10.Comment: Minor corrections. Published in Phys. Rev. Replaced to reflect the published versio

    Galaxy Galaxy Lensing as a Probe of Galaxy Dark Matter Halos

    Full text link
    Gravitational lensing has now become a popular tool to measure the mass distribution of structures in the Universe on various scales. Here we focus on the study of galaxy's scale dark matter halos with galaxy-galaxy lensing techniques: observing the shapes of distant background galaxies which have been lensed by foreground galaxies allows us to map the mass distribution of the foreground galaxies. The lensing effect is small compared to the intrinsic ellipticity distribution of galaxies, thus a statistical approach is needed to derive some constraints on an average lens population. An advantage of this method is that it provides a probe of the gravitational potential of the halos of galaxies out to very large radii, where few classical methods are viable, since dynamical and hydrodynamical tracers of the potential cannot be found at this radii. We will begin by reviewing the detections of galaxy-galaxy lensing obtained so far. Next we will present a maximum likelihood analysis of simulated data we performed to evaluate the accuracy and robustness of constraints that can be obtained on galaxy halo properties. Then we will apply this method to study the properties of galaxies which stand in massive cluster lenses at z~0.2. The main result of this work is to find dark matter halos of cluster galaxies to be significantly more compact compared to dark matter halos around field galaxies of equivalent luminosity, in agreement with early galaxy-galaxy lensing studies and with theoretical expectations, in particular with the tidal stripping scenario. We thus provide a strong confirmation of tidal truncation from a homogeneous sample of galaxy clusters. Moreover, it is the first time that cluster galaxies are probed successfully using galaxy-galaxy lensing techniques from ground based data.Comment: 8 pages, 5 figures, to appear in Moriond Proceedings, From Dark Halos to Ligh

    Absolute frequency measurements of the D2D_2 line and fine-structure interval in 39^{39}K

    Full text link
    We report a value for the D2D_2-line frequency of 39^{39}K with 0.25 ppb uncertainty. The frequency is measured using an evacuated ring-cavity resonator whose length is calibrated against a reference laser. The D2D_2 line presents a problem in identifying the line center because the closely-spaced energy levels of the excited state are not resolved. We use computer modelling of the measured spectrum to extract the line center and obtain a value of 391 015 578.040(75) MHz. In conjunction with our previous measurement of the D1D_1 line, we determine the fine-structure interval in the 4P4P state to be 1 729 997.132(90) MHz. The results represent significant improvement over previous values.Comment: 4 pages, 3 figure

    The effect of early dark matter halos on reionization

    Full text link
    The annihilation of dark matter particles releases energy, ionizing some of the gas in the Universe. We investigate the effect of dark matter halos on reionization. We show that the effect depends on the assumed density profile, the particle mass, and the assumed minimum halo mass. For NFW halos and typical WIMPs, we find the effect to be quite small. However, light dark matter candidates in the MeV range can contribute significantly to reionization and can make an important contribution to the measured optical depth. This effect may be used to constrain light dark matter models. We also study the effect of varying the halo density profile on reionization.Comment: Minor changes from v2. Accepted for publication in Phys. Rev.

    Artificial Neural Network Based Machining Operation Selection for Prismatic Components

    Get PDF
    Computer-aided process planning systems are used to assist human planners in producing better process plans. New artificial intelligence techniques play a significant role in CAPP. CAPP research includes neural network approaches, knowledge-based techniques, Petri nets, agent-based, fuzzy set theory, genetic algorithm, Standard for the Exchange of Product model data (STEP)-Compliant CAPP, and Internet-based techniques. This study deals with the application of the Artificial Neural Network techniques (ANN) in CAPP because of their learning ability and massive potential toward dynamic planning.  This study focuses on the usage of artificial neural networks machining operation selection and sequences of operations for prismatic components. The intelligent CAPP system suggests the best machining operation and its sequences for the prismatic components using tolerances, material requirements, and surface finish details. The process planning of machining features in part is the starting point. An enormous amount of knowledge is required for part feature process planning, like selecting proper material, size, stock, dimensional tolerance, and surface finish. In this work, various prismatic features, such as a hole, slot, pocket, boss, chamfer, fillet, and face are taken and details like material, size, stock, dimensional tolerance and surface finish are properly normalized and given as input to neural networks to find the required sequence of machining operation. LevenbergMarquidt algorithm was used to train the networks and was found very effective in operation sequence selection. A sample prismatic component with nine features have been analyzed and found to be more productive. Levenberg Marquidt  algorithm is then compared with the conjugant space algorithm, and it is found that the former produces less error in outputs compared to them later

    Evolutionary dynamics of adult stem cells: Comparison of random and immortal strand segregation mechanisms

    Full text link
    This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) Random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell. (2) ``Immortal DNA strand'' co-segregation, for which the stem cell retains the daughter chromosomes with the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed by Cairns (J. Cairns, {\it Nature} {\bf 255}, 197 (1975)), by which stem cells preserve the integrity of their genomes. For random segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect lesion repair (in this context, lesion repair is taken to mean repair of postreplication base-pair mismatches). Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this segregation mechanism is age-dependent. From our model we are able to mathematically show that, when lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells, we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid potentially fixing a mutation in both DNA strands.Comment: 9 pages, 3 figure

    Do long-duration GRBs follow star formation?

    Get PDF
    We compare the luminosity function and rate inferred from the BATSE long bursts peak flux distribution with those inferred from the Swift peak flux distribution. We find that both the BATSE and the Swift peak fluxes can be fitted by the same luminosity function and the two samples are compatible with a population that follows the star formation rate. The estimated local long GRB rate (without beaming corrections) varies by a factor of five from 0.05 Gpc^(-3)yr^(-1) for a rate function that has a large fraction of high redshift bursts to 0.27 Gpc^(-3)yr^(-1) for a rate function that has many local ones. We then turn to compare the BeppoSax/HETE2 and the Swift observed redshift distributions and compare them with the predictions of the luminosity function found. We find that the discrepancy between the BeppoSax/HETE2 and Swift observed redshift distributions is only partially explained by the different thresholds of the detectors and it may indicate strong selection effects. After trying different forms of the star formation rate (SFR) we find that the observed Swift redshift distribution, with more observed high redshift bursts than expected, is inconsistent with a GRB rate that simply follows current models for the SFR. We show that this can be explained by GRB evolution beyond the SFR (more high redshift bursts). Alternatively this can also arise if the luminosity function evolves and earlier bursts were more luminous or if strong selection effects affect the redshift determination.Comment: 15 pages, 8 figures, accepted for publication in JCA

    The Orbital Structure of Dark Matter Halos with Gas

    Full text link
    With the success of the Chandra and XMM missions and the maturation of gravitational lensing techniques, powerful constraints on the orbital structure of cluster dark matter halos are possible. I show that the X-ray emissivity and mass of a galaxy cluster uniquely specify the anisotropy and velocity dispersion profiles of its dark matter halo. I consider hydrostatic as well as cooling flow scenarios, and apply the formalism to the lensing cluster CL0024+16 and the cooling flow cluster Abell 2199. In both cases, the model predicts a parameter-free velocity dispersion profile that is consistent with independent optical redshift surveys of the clusters.Comment: 17 pages, 12 figures; to appear in the Astrophysical Journa
    corecore