1,246 research outputs found

    Reconstruction of general scalar-field dark energy models

    Full text link
    The reconstruction of scalar-field dark energy models is studied for a general Lagrangian density p(ϕ,X)p(\phi, X), where XX is a kinematic term of a scalar field ϕ\phi. We implement the coupling QQ between dark energy and dark matter and express reconstruction equations using two observables: the Hubble parameter HH and the matter density perturbation δm\delta_m. This allows us to determine the structure of corresponding theoretical Lagrangian together with the coupling QQ from observations. We apply our formula to several forms of Lagrangian and present concrete examples of reconstruction by using the recent Gold dataset of supernovae measurements. This analysis includes a generalized ghost condensate model as a way to cross a cosmological-constant boundary even for a single-field case.Comment: 8 pages, 2 figure

    Age problem in holographic dark energy

    Full text link
    We study the age problem of the universe with the holographic DE model introduced in [21], and test the model with some known old high redshift objects (OHRO). The parameters of the model have been constrained using the SNIa, CMB and BAO data set. We found that the age of the old quasar APM 08 279+5255 at z = 3.91 can be described by the model.Comment: 13 page

    APSIS - an Artificial Planetary System in Space to probe extra-dimensional gravity and MOND

    Get PDF
    A proposal is made to test Newton's inverse-square law using the perihelion shift of test masses (planets) in free fall within a spacecraft located at the Earth-Sun L2 point. Such an Artificial Planetary System In Space (APSIS) will operate in a drag-free environment with controlled experimental conditions and minimal interference from terrestrial sources of contamination. We demonstrate that such a space experiment can probe the presence of a "hidden" fifth dimension on the scale of a micron, if the perihelion shift of a "planet" can be measured to sub-arc-second accuracy. Some suggestions for spacecraft design are made.Comment: 17 pages, revtex, references added. To appear in Special issue of IJMP

    Quantum effects, soft singularities and the fate of the universe in a braneworld cosmology

    Full text link
    We examine a class of braneworld models in which the expanding universe encounters a "quiescent" future singularity. At a quiescent singularity, the energy density and pressure of the cosmic fluid as well as the Hubble parameter remain finite while all derivatives of the Hubble parameter diverge (i.e., H˙{\dot H}, H¨{\ddot H}, etc. \to \infty). Since the Kretschmann invariant diverges (RiklmRiklmR_{iklm}R^{iklm} \to \infty) at the singularity, one expects quantum effects to play an important role as the quiescent singularity is approached. We explore the effects of vacuum polarization due to massless conformally coupled fields near the singularity and show that these can either cause the universe to recollapse or, else, lead to a softer singularity at which HH, H˙{\dot H}, and H¨{\ddot H} remain finite while {\dddot H} and higher derivatives of the Hubble parameter diverge. An important aspect of the quiescent singularity is that it is encountered in regions of low density, which has obvious implications for a universe consisting of a cosmic web of high and low density regions -- superclusters and voids. In addition to vacuum polarization, the effects of quantum particle production of non-conformal fields are also likely to be important. A preliminary examination shows that intense particle production can lead to an accelerating universe whose Hubble parameter shows oscillations about a constant value.Comment: 19 pages, 3 figures, text slightly improved and references added. Accepted for publication in Classical and Quantum Gravit

    Spacetimes with Longitudinal and Angular Magnetic Fields in Third Order Lovelock Gravity

    Get PDF
    We obtain two new classes of magnetic brane solutions in third order Lovelock gravity. The first class of solutions yields an (n+1)(n+1)-dimensional spacetime with a longitudinal magnetic field generated by a static source. We generalize this class of solutions to the case of spinning magnetic branes with one or more rotation parameters. These solutions have no curvature singularity and no horizons, but have a conic geometry. For the spinning brane, when one or more rotation parameters are nonzero, the brane has a net electric charge which is proportional to the magnitude of the rotation parameters, while the static brane has no net electric charge. The second class of solutions yields a pacetime with an angular magnetic field. These solutions have no curvature singularity, no horizon, and no conical singularity. Although the second class of solutions may be made electrically charged by a boost transformation, the transformed solutions do not present new spacetimes. Finally, we use the counterterm method in third order Lovelock gravity and compute the conserved quantities of these spacetimes.Comment: 15 pages, no figur

    Quintessential Inflation on the Brane and the Relic Gravity Wave Background

    Full text link
    Quintessential inflation describes a scenario in which both inflation and dark energy (quintessence) are described by the same scalar field. In conventional braneworld models of quintessential inflation gravitational particle production is used to reheat the universe. This reheating mechanism is very inefficient and results in an excessive production of gravity waves which violate nucleosynthesis constraints and invalidate the model. We describe a new method of realizing quintessential inflation on the brane in which inflation is followed by `instant preheating' (Felder, Kofman & Linde 1999). The larger reheating temperature in this model results in a smaller amplitude of relic gravity waves which is consistent with nucleosynthesis bounds. The relic gravity wave background has a `blue' spectrum at high frequencies and is a generic byproduct of successful quintessential inflation on the brane.Comment: 9 pages, 5 eps figures. Discussion and one eps figure summarizing the GB correction to steep brane world inflation added, typos corrected and references added; final version to appear in PR

    Signature of the interaction between dark energy and dark matter in observations

    Full text link
    We investigate the effect of an interaction between dark energy and dark matter upon the dynamics of galaxy clusters. This effect is computed through the Layser-Irvine equation, which describes how an astrophysical system reaches virial equilibrium and was modified to include the dark interactions. Using observational data from almost 100 purportedly relaxed galaxy clusters we put constraints on the strength of the couplings in the dark sector. We compare our results with those from other observations and find that a positive (in the sense of energy flow from dark energy to dark matter) non vanishing interaction is consistent with the data within several standard deviations.Comment: 13 pages, 3 figures; matches PRD published versio

    Cosmological tachyon condensation

    Full text link
    We consider the prospects for dark matter/energy unification in k-essence type theories. General mappings are established between the k-essence scalar field, the hydrodynamic and braneworld descriptions. We develop an extension of the general relativistic dust model that incorporates the effects of both pressure and the associated acoustic horizon. Applying this to a tachyon model, we show that this inhomogeneous "variable Chaplygin gas" does evolve into a mixed system containing cold dark matter like gravitational condensate in significant quantities. Our methods can be applied to any dark energy model as well as to mixtures of dark energy and traditional dark matter.Comment: 22 pages, 3 figures, title changed, typos corrected, accepted in Phys. Rev.

    Can the Chaplygin gas be a plausible model for dark energy?

    Get PDF
    In this note two cosmological models representing the flat Friedmann Universe filled with a Chaplygin fluid, with or without dust, are analyzed in terms of the recently proposed "statefinder" parameters. Trajectories of both models in the parameter plane are shown to be significantly different w.r.t. "quiessence" and "tracker" models. The generalized Chaplygin gas model with an equation of state of the form p=A/ραp = -A/\rho^{\alpha} is also analyzed in terms of the statefinder parameters.Comment: 6 pages, 2 figure

    Quantum vacuum effects as generalized f(R) gravity. Application to stars

    Get PDF
    It is assumed that, for weak spacetime curvature, the main gravitational effect of the quantum vacuum stress-energy corresponds to adding two terms to the Einstein-Hilbert action, proportional to the square of the curvature scalar and to the contraction of two Ricci tensors, respectively. It is shown that compatibility with terrestrial and solar systems observaction implies that the square roorts of the coefficients of these terms should be either a few millimeters or a few hundred meters. It is shown that the vacuum contribution increase the stability of white dwarfs.Comment: GEneralizes and improves previous versio
    corecore