71 research outputs found

    Recycling paper to recarbonise soil

    Get PDF
    Soil organic carbon can be increased through sympathetic land management and/or directly by incorporating carbon rich amendments. Herein, a field experiment amended paper crumble (PC) to soil at a normal deployment rate of 50 t ha−1, and at higher rates up to 200 t ha−1. The nominal 50 t ha−1 PC amendment resulted a mean increase in soil carbon of 12.5 g kg−1. Using a modified ROTH-C carbon fate model, the long-term (50 years) carbon storage potential of a 50 t ha−1 PC amendment was determined to be 0.36 tC ha−1. Modelling a rotational (4 yearly) 50 t ha−1 PC amendment indicated 6.65 tC ha−1 uplift would accrue after 50 years. Contextualised for the average farm in the East of England (~120 ha, with 79 % as arable), PC derived increases in SOC would be equivalent to 2310 t CO2e. These results support the use of PC to deliver significant levels of soil recarbonisation. Beyond carbon, PC was observed to influence other soil properties. Benefits observed included, decreased bulk density, increased water holding capacity, and increased cation exchange capacity. While PC amendment did not significantly increase wheat (Triticum aestivum) crop yield, manifold benefits in terms of increased SOC, long-term carbon storage potential, and improved soil quality sustains PC as a beneficial soil conditioner

    Comparative studies on the structure of an upland African stream ecosystem

    Get PDF
    Upland stream systems have been extensively investigated in Europe, North America and Australasia and many of the central ideas concerning their function are based on these systems. One central paradigm, the river continuum concept is ultimately derived from those North American streams whose catchments remain forested with native vegetation. Streams of the tropics may or may not fit the model. They have been little studied. The Amani Nature Reserve in the East Usambara Mountains of north-eastern Tanzania offers an opportunity to bring these naturally forested systems to the attention of the ecological community. This article describes a comparison made between two lengths of the River Dodwe in this area. The work was carried out by a group of postgraduate students from eighteen European and African countries with advice from five staff members, as part of a course organised by the Tropical Biology Association. Rigorous efforts were made to standardise techniques, in a situation where equipment and laboratory facilities were very basic, through a management structure and deliberate allocation of work to specialists in each area.The article offers a summary of invertebrate communities found in the stream and its biomass. Crabs seem to be the key organism in both sections of the streams

    Community Development of the Snow Microwave Radiative Transfer Model for Passive, Active and Altimetry Observations of the Cryosphere

    Get PDF
    The Snow Microwave Radiative Transfer (SMRT) model was initially developed to explore the sensitivity of microwave scattering to snow microstructure for active and passive remote sensing applications. Here, we discuss the modular design of SMRT that has enabled its rapid extension by the community. SMRT can now represent a layered medium consisting of snow, land ice, lake ice and/or sea ice overlying a substrate of soil, water or parameterized by reflectivity. A time-dependent radiative transfer solution method has also been added to allow for low resolution mode altimetry applications. We illustrate the use of SMRT to simulate brightness temperature for snow on lake ice, backscatter for snow on soil and altimeter waveforms for snow on sea ice

    Nitrate enhances skeletal muscle fatty acid oxidation via a nitric oxide-cGMP-PPAR-mediated mechanism.

    Get PDF
    BACKGROUND: Insulin sensitivity in skeletal muscle is associated with metabolic flexibility, including a high capacity to increase fatty acid (FA) oxidation in response to increased lipid supply. Lipid overload, however, can result in incomplete FA oxidation and accumulation of potentially harmful intermediates where mitochondrial tricarboxylic acid cycle capacity cannot keep pace with rates of β-oxidation. Enhancement of muscle FA oxidation in combination with mitochondrial biogenesis is therefore emerging as a strategy to treat metabolic disease. Dietary inorganic nitrate was recently shown to reverse aspects of the metabolic syndrome in rodents by as yet incompletely defined mechanisms. RESULTS: Herein, we report that nitrate enhances skeletal muscle FA oxidation in rodents in a dose-dependent manner. We show that nitrate induces FA oxidation through a soluble guanylate cyclase (sGC)/cGMP-mediated PPARβ/δ- and PPARα-dependent mechanism. Enhanced PPARβ/δ and PPARα expression and DNA binding induces expression of FA oxidation enzymes, increasing muscle carnitine and lowering tissue malonyl-CoA concentrations, thereby supporting intra-mitochondrial pathways of FA oxidation and enhancing mitochondrial respiration. At higher doses, nitrate induces mitochondrial biogenesis, further increasing FA oxidation and lowering long-chain FA concentrations. Meanwhile, nitrate did not affect mitochondrial FA oxidation in PPARα(-/-) mice. In C2C12 myotubes, nitrate increased expression of the PPARα targets Cpt1b, Acadl, Hadh and Ucp3, and enhanced oxidative phosphorylation rates with palmitoyl-carnitine; however, these changes in gene expression and respiration were prevented by inhibition of either sGC or protein kinase G. Elevation of cGMP, via the inhibition of phosphodiesterase 5 by sildenafil, also increased expression of Cpt1b, Acadl and Ucp3, as well as CPT1B protein levels, and further enhanced the effect of nitrate supplementation. CONCLUSIONS: Nitrate may therefore be effective in the treatment of metabolic disease by inducing FA oxidation in muscle.This work was kindly supported by a British Heart Foundation studentship to TA (FS/09/050). AJMu thanks the Research Councils UK for supporting his academic fellowship. LDR is supported by the Medical Research Council-Human Nutrition Research Elsie Widdowson Fellowship. AJMo thanks the Natural Sciences and Engineering Research Council for supporting her postdoctoral fellowship. MF acknowledges support from the Medical Research Council (G1001536). JLG thanks the Medical Research Council (MC_UP_A090_1006), the Biotechnology and Biological Sciences Research Council (BB/H013539/2) and British Heart Foundation for supporting work in his laboratory

    Influence of Altitude on Tropical Marine Habitat Classification using Fixed-Wing UAV Imagery

    Get PDF
    Unmanned aerial vehicles (UAVs) are cost-effective remote sensing tools useful for generating very high-resolution (VHR) aerial imagery. Habitat maps generated from UAV imagery are a fundamental component of marine spatial planning, essential for the designation and governance of marine protected areas (MPAs). We investigated whether UAV survey altitude affects habitat classification performance and the classification accuracy of thematic maps from a tropical shallow water environment. We conducted repeated UAV flights at 75, 85, and 110 m, using a fixed-wing UAV on the Turneffe Atoll, Belize. Flights were ground-truthed with snorkel surveys. Images were mosaiced to form orthomosaics and transformed into thematic maps through semi-automatic object-based image analysis (OBIA). Three subset areas (4000 m2, 17000 m2 and 17000 m2) from two cayes on the atoll were selected to investigate the effect of survey altitude. A linear regression demonstrated that for every 1 m increase in survey altitude, there was a ~1% decrease in the overall classification accuracy. A low survey altitude of 75 m produced a higher classification accuracy for thematic maps and increased the representation of mangrove, seagrass, and sand. The variability in classified cover was driven by altitude, although the direction and extent of this relationship was specific to each class. For coral and sea, classified cover decreased with increased altitude. Mangrove classified cover was non-sensitive to altitude changes, demonstrating a lesser need for a consistent survey altitude. Sand and seagrass had a greater sensitivity to altitude, due to classified cover variability between altitudes. Our findings suggest that survey altitude should be minimised when classifying tropical marine environments (coral, seagrass) and, given that most fixed-wing UAVs are restricted to a minimum altitude of 70 m, we recommend an altitude of 75 m. Survey altitude should be a major consideration when targeting habitats with greater sensitivity to altitude variabilit

    Inorganic Nitrate Promotes the Browning of White Adipose Tissue Through the Nitrate-Nitrite-Nitric Oxide Pathway

    Get PDF
    Inorganic nitrate was once considered an oxidation end product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach, we mechanistically defined that nitrate not only increases the expression of thermogenic genes in brown adipose tissue but also induces the expression of brown adipocyte–specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious comorbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte–specific gene expression in white adipose tissue in a murine model of obesity. Because resulting beige/brite cells exhibit antiobesity and antidiabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome

    Setting an agenda for disability research in Australia: organisation-led and targeted consultation report

    Get PDF
    This report presents the results of the Phase 2b consultation conducted with 974 individuals from 21 non-government organisations (NGOs), including service providers and disabled peoples’ organisations (DPOs), the First Nations-focused National Disability Research Agenda survey and online focus groups and in-depth interviews with people with augmentative and alternative communication needs. It is part of multi-phase research agenda setting exercise that has been conducted to understand existing disability research in Australia and consult with the disability sector to understand their priorities for disability research. This research was funded by the National Disability Research Partnership (NDRP) to underpin their development of an agenda for Australian disability research over the next decade

    Mitochondrial function after global cardiac ischemia and reperfusion: Influences of organelle isolation protocols

    Full text link
    Dog hearts were made globally ischemic for 1 hr at normothermia, at 28°C, or at normothermia after perfusion with a hyperkalemic cardioplegia solution. After 1 hr of reperfusion mitochondria were isolated from each heart using three protocols involving: processing (homogenization and centrifugation) exclusively in KCl, Tris-EDTA plus albumin (KEA) solution; homogenizing in KEA but washing mitochondria in EDTA-depleted media (KA); or processing exclusively in EDTA-free medium.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41745/1/395_2005_Article_BF01907770.pd

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes
    • …
    corecore