1,132 research outputs found

    Efficient and Practical Transfer Hydrogenation of Ketones Catalyzed by a Simple Bidentate Mn−NHC Complex

    Get PDF
    Catalytic reductions of carbonyl‐containing compounds are highly important for the safe, sustainable, and economical production of alcohols. Herein, we report on the efficient transfer hydrogenation of ketones catalyzed by a highly potent Mn(I)−NHC complex. Mn−NHC 1 is practical at metal concentrations as low as 75 ppm, thus approaching loadings more conventionally reserved for noble metal based systems. With these low Mn concentrations, catalyst deactivation is found to be highly temperature dependent and becomes especially prominent at increased reaction temperature. Ultimately, understanding of deactivation pathways could help close the activity/stability‐gap with Ru and Ir catalysts towards the practical implementation of sustainable earth‐abundant Mn‐complexes

    Desynchronization during anticipatory attention for an upcoming stimulus: A comparative EEG/MEG study

    Get PDF
    Objectives: Our neurophysiological model of anticipatory behaviour (e.g. Acta Psychol 101 (1999) 213; Bastiaansen et al., 1999a) predicts an activation of (primary) sensory cortex during anticipatory attention for an upcoming stimulus. In this paper we attempt to demonstrate this by means of event-related desynchronization (ERD). Methods: Five subjects performed a time estimation task, and were informed about the quality of their time estimation by either visual or auditory stimuli providing Knowledge of Results (KR). EEG and MEG were recorded in separate sessions, and ERD was computed in the 8± 10 and 10±12 Hz frequency bands for both datasets. Results: Both in the EEG and the MEG we found an occipitally maximal ERD preceding the visual KR for all subjects. Preceding the auditory KR, no ERD was present in the EEG, whereas in the MEG we found an ERD over the temporal cortex in two of the 5 subjects. These subjects were also found to have higher levels of absolute power over temporal recording sites in the MEG than the other subjects, which we consider to be an indication of the presence of a `tau' rhythm (e.g. Neurosci Lett 222 (1997) 111). Conclusions: It is concluded that the results are in line with the predictions of our neurophysiological model

    Impact of mammographic screening and advanced cancer definition on the percentage of advanced-stage cancers in a steady-state breast screening programme in the Netherlands

    Get PDF
    Background: To estimate the percentages of advanced-stage breast cancers (BCs) detected during the course of a steady-state screening programme when using different definitions of advanced BC. Methods: Data of women aged 49–74 years, diagnosed with BC in 2006–2015, were selected from the Netherlands Cancer Registry and linked to the screening registry. BCs were classified as screen-detected, interval or non-screened. Three definitions of advanced BC were used for comparison: TNM stage (III–IV), NM stage (N+ and/or M+) and T size (invasive tumour ≄15 mm). Analyses were performed assuming a 10% overdiagnosis rate. In sensitivity analyses, this assumption varied from 0 to 30%. Results: We included 46,734 screen-detected, 17,362 interval and 24,189 non-screened BCs. By TNM stage, 4.9% of screen-detected BCs were advanced, compared with 19.4% and 22.8% of interval and non-screened BCs, respectively (p < 0.001). Applying the other definitions led to higher percentages of advanced BC being detected. Depending on the definition interval, non-screened BCs had a 2–5-times risk of being advanced. Conclusion: Irrespective of the definition, screen-detected BCs were less frequently in the advanced stage. These findings provide evidence of a stage shift to early detection and support the potential of mammographic screening to reduce treatment-related burdens and the mortality associated with BC

    A comparison of ultrafast and conventional spectral Doppler ultrasound to measure cerebral blood flow velocity during inguinal hernia repair in infants

    Get PDF
    Background: Ultrafast cerebral Doppler ultrasound enables simultaneous quantification and visualization of cerebral blood flow velocity. The aim of this study is to compare the use of conventional and ultrafast spectral Doppler during anesthesia and their potential to show the effect of anesthesiologic procedures on cerebral blood flow velocities, in relation to blood pressure and cerebral oxygenation in infants undergoing inguinal hernia repair. Methods: A single-center prospective observational cohort study in infants up to six months of age. We evaluated conventional and ultrafast spectral Doppler cerebral ultrasound measurements in terms of number of successful measurements during the induction of anesthesia, after sevoflurane induction, administration of caudal analgesia, a fluid bolus and emergence of anesthesia. Cerebral blood flow velocity was quantified in pial arteries using conventional spectral Doppler and in the cerebral cortex using ultrafast Doppler by peak systolic velocity, end diastolic velocity and resistivity index.Results: Twenty infants were included with useable conventional spectral Doppler images in 72/100 measurements and ultrafast Doppler images in 51/100 measurements. Intraoperatively, the success rates were 53/60 (88.3%) and 41/60 (68.3%), respectively. Cerebral blood flow velocity increased after emergence for both conventional (end diastolic velocity, from 2.01 to 2.75 cm/s, p &lt; 0.001) and ultrafast spectral Doppler (end diastolic velocity, from 0.59 to 0.94 cm/s), whereas cerebral oxygenation showed a reverse pattern with a decrease after the emergence of the infant (85% to 68%, p &lt; 0.001). Conclusion: It is possible to quantify cortical blood flow velocity during general anesthesia using conventional and ultrafast spectral Doppler cerebral ultrasound. Cerebral blood flow velocity and blood pressure decreased, while regional cerebral oxygenation increased during general anesthesia. Ultrafast spectral Doppler ultrasound offers novel insights into perfusion within the cerebral cortex, unattainable through conventional spectral ultrasound. Yet, ultrafast Doppler is curtailed by a lower success rate and a more rigorous learning curve compared to conventional method.</p

    A comparison of ultrafast and conventional spectral Doppler ultrasound to measure cerebral blood flow velocity during inguinal hernia repair in infants

    Get PDF
    Background: Ultrafast cerebral Doppler ultrasound enables simultaneous quantification and visualization of cerebral blood flow velocity. The aim of this study is to compare the use of conventional and ultrafast spectral Doppler during anesthesia and their potential to show the effect of anesthesiologic procedures on cerebral blood flow velocities, in relation to blood pressure and cerebral oxygenation in infants undergoing inguinal hernia repair. Methods: A single-center prospective observational cohort study in infants up to six months of age. We evaluated conventional and ultrafast spectral Doppler cerebral ultrasound measurements in terms of number of successful measurements during the induction of anesthesia, after sevoflurane induction, administration of caudal analgesia, a fluid bolus and emergence of anesthesia. Cerebral blood flow velocity was quantified in pial arteries using conventional spectral Doppler and in the cerebral cortex using ultrafast Doppler by peak systolic velocity, end diastolic velocity and resistivity index.Results: Twenty infants were included with useable conventional spectral Doppler images in 72/100 measurements and ultrafast Doppler images in 51/100 measurements. Intraoperatively, the success rates were 53/60 (88.3%) and 41/60 (68.3%), respectively. Cerebral blood flow velocity increased after emergence for both conventional (end diastolic velocity, from 2.01 to 2.75 cm/s, p &lt; 0.001) and ultrafast spectral Doppler (end diastolic velocity, from 0.59 to 0.94 cm/s), whereas cerebral oxygenation showed a reverse pattern with a decrease after the emergence of the infant (85% to 68%, p &lt; 0.001). Conclusion: It is possible to quantify cortical blood flow velocity during general anesthesia using conventional and ultrafast spectral Doppler cerebral ultrasound. Cerebral blood flow velocity and blood pressure decreased, while regional cerebral oxygenation increased during general anesthesia. Ultrafast spectral Doppler ultrasound offers novel insights into perfusion within the cerebral cortex, unattainable through conventional spectral ultrasound. Yet, ultrafast Doppler is curtailed by a lower success rate and a more rigorous learning curve compared to conventional method.</p

    The method of detection of ductal carcinoma in situ has no therapeutic implications: results of a population-based cohort study

    Get PDF
    Multivariable-adjusted Cox regression analysis of ipsilateral and contralateral invasive breast cancer in women aged 49–75 years at DCIS diagnosis (DCIS diagnostic period 1989–2004). Age was the primary time scale, time since DCIS diagnosis (0–5, 5–10, and ≄10 years) the secondary time scale, and DCIS treatment a time-varying covariable (DOCX 22 kb
    • 

    corecore