4,438 research outputs found

    Pre-settlement coral-reef fish larvae respond to magnetic field changes during the day.

    Full text link
    Observations of coral-reef fish larvae have revealed remarkably consistent orientation behaviour while swimming offshore, requiring large-scale orientation cues. However, the mechanisms underlying this behaviour are still being investigated. One potential large-scale cue for orientation is the Earth's geomagnetic field. Here, we examined the effect of magnetic field manipulations on the orientation behaviour of coral-reef fish during the pelagic larval phase. In the absence of visual cues, individual larvae responded to a 90 deg shift of the horizontal component of the magnetic field within a Helmholtz coil with a comparable shift in orientation, demonstrating that they use a magnetic compass for orientation. Our findings suggest that geomagnetic field information guides swimming behaviour of larval fish in the pre-settlement phase. The ability to use large-scale sensory cues allows location-independent orientation of swimming, a behaviour that influences dispersal and connectivity of fish populations, which has important ecological implications for anthropogenic development of marine areas

    LHCb's Potential to Measure Flavour-Specific CP-Asymmetry in Semileptonic and Hadronic Bs0B^0_s Decays

    Get PDF
    "The CP asymmetry in Bs-Bsbar mixing, denoted as a^s_{fs}, is sensitive to new weak phases in the presence of physics beyond the Standard Model. This can be probed through a measurement of the time-dependent charge asymmetry A^s_{fs}(t) in flavour-specific decays. This note describes the LHCb strategy to measure a^s_{fs} using a time-dependent method, in flavour untagged decays of Bs->Ds mu nu and Bs->Ds pi. We also investigate a measurement of the difference of a^s_{fs} and a^d_{fs} in Bs->Ds mu nu and Bd->Dmu nu decays which allows to control the systematic uncertainty that arise from detection asymmetries.

    Optical Modeling Activities for NASA's James Webb Space Telescope (JWST): V. Operational Alignment Updates

    Get PDF
    This paper is part five of a series on the ongoing optical modeling activities for the James Webb Space Telescope (JWST). The first two papers discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients. The third paper investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory, and the fourth introduced the software toolkits used to perform much of the optical analysis for JWST. The work here models observatory operations by simulating line-of-sight image motion and alignment drifts over a two-week period. Alignment updates are then simulated using wavefront sensing and control processes to calculate and perform the corrections. A single model environment in Matlab is used for evaluating the predicted performance of the observatory during these operations

    A New Model for Fermion Masses in Supersymmetric Grand Unified Theories

    Full text link
    We present a simple model for fermion mass matrices and quark mixing in the context of supersymmetric grand unified theories and show its agreement with experiment. Our model realizes the GUT mass relations md=3mem_d=3m_e, ms=mμ/3m_s= m_\mu/3, mb=mτm_b=m_\tau in a new way and is easily consistent with values of mtm_t suggested by MSSM fits to LEP data.Comment: Latex, 8 p., ITP-SB-93-37 (revised version contains minor changes in some wording and citations; no changes in analytic or numerical results.

    Test of the photon detection system for the LHCb RICH Upgrade in a charged particle beam

    Full text link
    The LHCb detector will be upgraded to make more efficient use of the available luminosity at the LHC in Run III and extend its potential for discovery. The Ring Imaging Cherenkov detectors are key components of the LHCb detector for particle identification. In this paper we describe the setup and the results of tests in a charged particle beam, carried out to assess prototypes of the upgraded opto-electronic chain from the Multi-Anode PMT photosensor to the readout and data acquisition system.Comment: 25 pages, 22 figure

    Anomalous tqγtq\gamma coupling effects in exclusive radiative B-meson decays

    Full text link
    The top-quark FCNC processes will be searched for at the CERN LHC, which are correlated with the B-meson decays. In this paper, we study the effects of top-quark anomalous interactions tqγtq\gamma in the exclusive radiative BKγB\to K^*\gamma and BργB\to\rho\gamma decays. With the current experimental data of the branching ratios, the direct CP and the isospin asymmetries, bounds on the coupling κtcRγ\kappa_{tcR}^{\gamma} from BKγB\to K^*\gamma and κtuRγ\kappa_{tuR}^{\gamma} from BργB\to \rho\gamma decays are derived, respectively. The bound on κtcRγ|\kappa_{tcR}^{\gamma}| from B(BKγ){\mathcal B}(B\to K^{*}\gamma) is generally compatible with that from B(BXsγ){\mathcal B}(B\to X_{s}\gamma). However, the isospin asymmetry Δ(Kγ)\Delta(K^{*}\gamma) further restrict the phase of κtcRγ\kappa_{tcR}^{\gamma}, and the combined bound results in the upper limit, B(tcγ)<0.21\mathcal B(t\to c\gamma)<0.21%, which is lower than the CDF result. For real κtcRγ\kappa_{tcR}^{\gamma}, the upper bound on B(tcγ)\mathcal B(t\to c\gamma) is about of the same order as the 5σ5\sigma discovery potential of ATLAS with an integrated luminosity of 10fb110 {\rm fb}^{-1}. For BργB\to\rho\gamma decays, the NP contribution is enhanced by a large CKM factor Vud/Vtd|V_{ud}/V_{td}|, and the constraint on tuγtu\gamma coupling is rather restrictive, B(tuγ)<1.44×105\mathcal B(t\to u\gamma)<1.44\times 10^{-5}. With refined measurements to be available at the LHCb and the future super-B factories, we can get close correlations between BVγB\to V \gamma and the rare tqγt\to q\gamma decays, which will be studied directly at the LHC ATLAS and CMS.Comment: 25 pages, 15 figures, pdflate

    Bayesian Fit of Exclusive bsˉb \to s \bar\ell\ell Decays: The Standard Model Operator Basis

    Full text link
    We perform a model-independent fit of the short-distance couplings C7,9,10C_{7,9,10} within the Standard Model set of bsγb\to s\gamma and bsˉb\to s\bar\ell\ell operators. Our analysis of BKγB \to K^* \gamma, BK()ˉB \to K^{(*)} \bar\ell\ell and BsμˉμB_s \to \bar\mu\mu decays is the first to harness the full power of the Bayesian approach: all major sources of theory uncertainty explicitly enter as nuisance parameters. Exploiting the latest measurements, the fit reveals a flipped-sign solution in addition to a Standard-Model-like solution for the couplings CiC_i. Each solution contains about half of the posterior probability, and both have nearly equal goodness of fit. The Standard Model prediction is close to the best-fit point. No New Physics contributions are necessary to describe the current data. Benefitting from the improved posterior knowledge of the nuisance parameters, we predict ranges for currently unmeasured, optimized observables in the angular distributions of BK(Kπ)ˉB\to K^*(\to K\pi)\,\bar\ell\ell.Comment: 42 pages, 8 figures; v2: Using new lattice input for f_Bs, considering Bs-mixing effects in BR[B_s->ll]. Main results and conclusion unchanged, matches journal versio

    Observation of a New Charmed Strange Meson

    Get PDF
    Using the CLEO-II detector, we have obtained evidence for a new meson decaying to D0K+D^0 K^+. Its mass is 2573.21.6+1.7±0.8±0.52573.2^{+1.7}_{-1.6}\pm 0.8\pm 0.5 {}~MeV/c2c^2 and its width is 164+5±316^{+5}_{-4}\pm 3~MeV/c2c^2. Although we do not establish its spin and parity, the new meson is consistent with predictions for an L=1L=1, S=1S=1, JP=2+J_P=2^+ charmed strange state.Comment: 9 pages uuencoded compressed postscript (process with uudecode then gunzip). hardcopies with figures can be obtained by sending mail to: [email protected]

    Observation of the Isospin-Violating Decay Ds+Ds+π0D_s^{*+}\to D_s^+\pi^0

    Full text link
    Using data collected with the CLEO~II detector, we have observed the isospin-violating decay Ds+Ds+π0D_s^{*+}\to D_s^+\pi^0. The decay rate for this mode, relative to the dominant radiative decay, is found to be Γ(Ds+Ds+π0)/Γ(Ds+Ds+γ)=0.0620.018+0.020±0.022\Gamma(D_s^{*+}\to D_s^+\pi^0)/\Gamma(D_s^{*+}\to D_s^+\gamma)= 0.062^{+0.020}_{-0.018}\pm0.022.Comment: 8 page uuencoded postscript file, also available through http://w4.lns.cornell.edu/public/CLN
    corecore