Abstract

The top-quark FCNC processes will be searched for at the CERN LHC, which are correlated with the B-meson decays. In this paper, we study the effects of top-quark anomalous interactions tqγtq\gamma in the exclusive radiative BKγB\to K^*\gamma and BργB\to\rho\gamma decays. With the current experimental data of the branching ratios, the direct CP and the isospin asymmetries, bounds on the coupling κtcRγ\kappa_{tcR}^{\gamma} from BKγB\to K^*\gamma and κtuRγ\kappa_{tuR}^{\gamma} from BργB\to \rho\gamma decays are derived, respectively. The bound on κtcRγ|\kappa_{tcR}^{\gamma}| from B(BKγ){\mathcal B}(B\to K^{*}\gamma) is generally compatible with that from B(BXsγ){\mathcal B}(B\to X_{s}\gamma). However, the isospin asymmetry Δ(Kγ)\Delta(K^{*}\gamma) further restrict the phase of κtcRγ\kappa_{tcR}^{\gamma}, and the combined bound results in the upper limit, B(tcγ)<0.21\mathcal B(t\to c\gamma)<0.21%, which is lower than the CDF result. For real κtcRγ\kappa_{tcR}^{\gamma}, the upper bound on B(tcγ)\mathcal B(t\to c\gamma) is about of the same order as the 5σ5\sigma discovery potential of ATLAS with an integrated luminosity of 10fb110 {\rm fb}^{-1}. For BργB\to\rho\gamma decays, the NP contribution is enhanced by a large CKM factor Vud/Vtd|V_{ud}/V_{td}|, and the constraint on tuγtu\gamma coupling is rather restrictive, B(tuγ)<1.44×105\mathcal B(t\to u\gamma)<1.44\times 10^{-5}. With refined measurements to be available at the LHCb and the future super-B factories, we can get close correlations between BVγB\to V \gamma and the rare tqγt\to q\gamma decays, which will be studied directly at the LHC ATLAS and CMS.Comment: 25 pages, 15 figures, pdflate

    Similar works

    Full text

    thumbnail-image

    Available Versions