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Abstract

The CP asymmetry in B0
s −B0

s mixing, denoted as as
fs, is sensitive to new weak phases

in the presence of physics beyond the Standard Model. This can be probed through a
measurement of the time-dependent charge asymmetry As

fs(t) in flavour-specific decays.
This note describes the LHCb strategy to measure as

fs using a time-dependent method,
in flavour untagged decays of B0

s→ D−
s µ

+νµ and B0
s→ D−

s π
+. We also investigate a mea-

surement of the difference of as
fs and ad

fs in B0
s→ D−

s µ
+νµ and B0

d→ D−µ+νµ decays which
allows to control the systematic uncertainty that arise from detection asymmetries.
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1 Introduction

The CP violation in the B0
s–B0

s mixing is expected to be tiny in the Standard Model,
but can be significantly enhanced in the presence of new CP-violating phases in general
physics models [1]. This can be probed through measurement of the charge asymmetry

in untagged flavour-specific decays such as
( )

B 0
s → D±

s µ
∓νµ or

( )

B 0
s → D±

s π
∓ [2]:

As
fs(t) =

Γ(
( )

B 0
s (t) → f)− Γ(

( )

B 0
s (t) → f̄)

Γ(
( )

B 0
s (t) → f) + Γ(

( )

B 0
s (t) → f̄)

(1)

with f = D−
s µ

+νµ or D−
s π

+ and f̄ = D+
s µ

−ν̄µ or D+
s π

−. In our notation As
fs(t) refers

to the untagged time-dependent asymmetry which is different from the physical constant
as

fs, which we aim to measure and will define later. If as
fs is measured in the semileptonic

channel, it is sometimes also called as
SL or As

SL as in [2].
The LHCb experiment is expected to collect about 1 million B0

s→ D−
s µ

+νµ
1 events in

2 fb−1 of data with a background to signal ratio of 0.36 [3], and 140 k B0
s→ D−

s π
+ events

in 2 fb−1 of data with a background to signal ratio of 0.4 [4]. These huge event samples
will provide an opportunity to measure As

fs with a high statistical precision.
The measured untagged time-dependent asymmetry As

fs(t) depends on three param-
eters, afs, the production asymmetry and the charge detection asymmetry. Two of them
can be extracted simultaneously, while the third has to be taken from other measure-
ments. In section 5.1 we present the results of the Monte Carlo study of a simultaneous
measurement of as

fs and the production asymmetry, assuming the detection asymmetry
can be obtained from elsewhere. Besides the important measurement of as

fs itself, the
measurement of the production asymmetry provides valuable input to many other anal-
yses.

In section 6.3 we present a technique for measuring CP violation in B mixing that
removes the need for external input on the detection asymmetry, using a simultaneous
analysis of the time-dependent asymmetry in the B0

s system, As
fs(t) and the equivalent

quantity in the B0
d system:

Ad
fs(t) =

Γ(
( )

B 0(t) → f)− Γ(
( )

B 0(t) → f̄)

Γ(
( )

B 0(t) → f) + Γ(
( )

B 0(t) → f̄)
. (2)

where both the B0
d and the B0

s decay to the same final state. This technique measures
the difference of the CP-violation parameter as

fs in the B0
s system and the equivalent

parameter in the B0
d system, ad

fs. This combination of parameters, as
fs−ad

fs, is interesting,

and sensitive to New Physics by itself. Using results for ad
fs from the B0

d factories [5, 6],
as

fs can be extracted.
This note is organised as follows. Section 2 gives a brief description of the theory of B0

s

mixing, the methods to extract as
fs in flavour specific decays, the prediction of as

fs in the
Standard Model and the effect of new physics on as

fs. Section 4 summarises the current

1Here, and in the rest of this note, this notation always implies charged-conjugate modes with and with-
out oscillation, unless the context requires otherwise. So the combined expected yield of B0

s → D−s µ+νµ,
B0

s → D+
s µ−ν̄µ, Bs → D−s µ+νµ, Bs → D+

s µ−ν̄µ is 1M in 2 fb−1.
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measurements of as
fs. The fast Monte Carlo simulation method for assessing statistical

precision and results are presented in Section 5. Section 6 discusses an alternative strategy
to measure as

fs. We conclude in Section 7.

2 Theory

In the following we summarise the relevant parameters involved in neutral B0 mixing and
in particular a time-dependent afs measurement, where we first describe the theory and
then take into account detector effects. In our description of the B0 mixing and decay
formalism we follow references [2,7,8]. This short summary applies generically to systems
of neutral B mesons. Where we refer to specific system, i.e. B0

d or B0
s , we add a subscript

as in ∆Γd, ∆Γs or a superscript as in ad
fs, a

s
fs. The generic subscript/superscript q, such

as ∆Γq or aq
fs is used when we refer to both systems at the same time.

2.1 Mixing Parameters ∆Γ,∆m, afs

The Schrödinger Equation for a superposition of flavour eigenstates, a|B0〉+ b|B0〉, is:

i
d

dt

(
a
b

)
= H

(
a
b

)
. (3)

This is the Schrödinger Equation restricted to the |B0〉 − |B0〉 subspace of state vectors.

The system is allowed to leave the |B0〉 − |B0〉 subspace by decaying to other particles,
hence H in equation 3 will not be Hermitian. A general matrix H can be expressed in
term of the Hermitian matrices M and Γ as

H = M− i

2
Γ (4)

where the Hermitian part M represents the energy (mass) of the system, while the non-
Hermitian part i

2
Γ the decay to other states. CPT invariance implies

〈B0|H|B0〉 = 〈B0|H|B0〉. (5)

Therefore the diagonal elements of H are the same and H can be written as:

H =

(
h11 h12

h21 h11

)
. with M =

(
M11 M12

M∗
12 M11

)
, Γ =

(
Γ11 Γ12

Γ∗12 Γ11

)
. (6)

The physical meson states with well-defined mass and decay width are the eigenvectors
of H:

|BH,L〉 = p|B0〉 ∓ q|B0〉 (7)

The subscripts L and H stand for the “light” and the “heavy” physical B0-states, which
have masses MH,L and widths ΓH,L. The mass- and width difference between those states
is:

∆m = MH −ML, ∆Γ = ΓL − ΓH (8)
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The average B0 lifetime is

Γ ≡ 1

2
(ΓL + ΓH) (9)

It is useful to define the following quantity:

φ ≡ arg(−M12/Γ12) (10)

The mass and width difference in the B0 system are related to Mij,Γij by:

(∆m)2 − 1

4
(∆Γ)2 = 4 |M12|2 − |Γ12|2 ,

∆m∆Γ = 4Re(M12Γ
∗
12) = 4 |M12Γ12| cosφ (11)

To a good approximation for the B0
s and B0

d system [8]:

∆m = 2 |M12| ∆Γ = 2 |Γ12| cosφ (12)

Equation 11 or 12 link two observables (∆Γ,∆m) to three parameters, |M12| , |Γ12| , φ. A
third observable, allowing to solve the system, is

afs ≡ Im
Γ12

M12

=
∆Γ

∆m
tanφ (13)

The subscript fs stands for “flavour-specific”, since it is measured in flavour-specific
decays (see below). Usually these are semileptonic decays, and therefore it is often referred
to as asl. This parameter is related to p, q by:

1−
∣∣∣∣qp
∣∣∣∣ =

afs

2
(14)

Thus it measures a deviation of
∣∣∣ qp∣∣∣ from unity and hence CP violation in the mixing of

the B and B̄ mesons. In the Standard Model this is expected to be a very small effect.

2.2 aq
fs in the Standard Model

M q
12 and Γq

12 are predicted in the Standard Model (SM) and related to other CKM pa-
rameters [9]:

M q
12 = −

G2
Fm

2
wηBmBqBBqf

2
Bq

12π2
So

(
m2

t

m2
W

)
(V ∗

tqVtb)
2 (15)

Γq
12 =

G2
Fm

2
bη
′
BmBqBBqf

2
Bq

8π2

[
(V ∗

tqVtb)
2 + V ∗

tqVtbV
∗
cqVcbO

(
m2

c

m2
b

)
+ (V ∗

cqVcb)
2O
(
m2

c

m2
b

)]
(16)

where GF is the Fermi constant, mW the W boson mass, and mi the mass of quark i; mBq ,
fBq and BBq are the B0

q mass, decay constant and bag parameter, respectively. S0(xt) is
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a known Inami-Lin function approximated very well by 0.784 x0.76
t , Vij are the elements

of the CKM matrix, ηB and η′B are QCD corrections of order unity.
Within the SM aq

fs is small [10], but non-zero, as (c.f. equation 13):

∣∣∣∣ Γq
12

M q
12

∣∣∣∣ = O
(
m2

b

m2
t

)
� 1 (17)

arg

(
− Γq

12

M q
12

)
= O

(
m2

c

m2
b

)
� 1 (18)

aq
fs ∝ −Im

(
V ∗

cqVcb

V ∗
tqVtb

)
(19)

Including next-to-leading order QCD corrections, using an operator basis reducing αs

and 1/mb errors, [2] [11],

ad
fs = −(4.8+1.0

−1.2)× 10−4 (20)

as
fs = +(2.06± 0.57)× 10−5 (21)

Constraints on ad
fs appear in the CKM unitarity triangle (UT) as circles of cer-

tainty/uncertainty touching the point (ρ̄,η̄) = (1,0) [10] [12], hence constraining the vertex
of the UT.

2.3 aq
fs with new physics

Precision flavour physics can illuminate/constrain wide avenues of possible new physics.
In many new models significant departures from the SM are predicted for aq

fs [13,14] with
up to two orders of magnitude enhancement in the B0

s system [1]. Much of the parameter
space of new physics models has already been explored, however it is difficult to constrain
models whose physics differs only slightly from the SM at LEP and LHC energies.

However, [15] and [10] find knowledge of the flavour-specific asymmetry can constrain
new physics (NP) models even if :

1. They have no new flavour structure

2. They maintain a unitary CKM matrix

3. Tree level NP processes are SM dominated

4. They have no new CPV from direct or interference terms

The most general model-independent form parameterising NP in B0
d,s mixing is as

follows, adopting the notations used in [1], [11] and [15]:

(Γq
12)

NP = (Γq
12)

SM (22)

(M q
12)

NP = ∆q · (M q
12)

SM = r2
qe

2iθq (M s
12)

SM =
(
1 + hqe

2iσq
)
(M q

12)
SM (23)

where r2
q and hq are real parameters representing the magnitude of new physics, σq and

θq are real angles representing the phase of new physics and ∆q is a complex parameter
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encompassing information on the real and imaginary new physics contribution. These
relations lead to:

(∆ms)
NP = (∆ms)

SM r2
s (24)

(∆Γs)
NP
CP = (∆Γs)

NP cos(2θs) = (∆Γs)
SM cos2(2θs) (25)(

as
fs

)NP
= Im

(
Γs

12

M s
12

)SM
cos(2θs)

r2
s

− Re

(
Γs

12

M s
12

)SM
sin(2θs)

r2
s

(26)

where (∆Γs)
NP
CP is the observable width difference between decays to CP-odd and

CP-even states. The other new physics parameters can be derived geometrically using
equation 23.

There are three necessary conditions in order that a measurement of the flavour specific
asymmetry as

fs should constrain 2θs [15]:

1. The experimental error on as
fs should be at or below |Γs

12/M
s
12|

SM

2. An upper bound on r2
s should be available

3. An independent upper bound on ad
fs should be available

Reference [15] uses the As,d
SL from present data given in section 4, and the ∆ms value from

the CDF collaboration [16] to constrain 2θs:

∆ms = (17.33+0.42
−0.21 ± 0.07) ps (27)

r2
s =

∆mexpt
s

∆mSM
s

= (0.97± 0.26) (28)

sin(2θs) = − As
SL

[Re(Γs
12/M

s
12)]

SM

∆mexpt
s

∆mSM
s

= −(1.9± 2.8) (29)

which is the limit assuming NP-dominance in As
SL. Constraints on new physics are indi-

cated in Figures 1 ,2 and 3, with the experimental values discussed in Section 4. Refer-
ence [11] concludes: “The current experimental situation shows a small deviation, which
may become significant, if the experimental uncertainties in ∆Γs, a

s
sl and φs will go down

in near future.”

3 Measuring afs

In this section we develop the formalism measuring afs in untagged, time-dependent decay
rate asymmetries in decays to flavour eigenstates, following closely [2, 7, 8]. An overview
of the notation used in this section is given in appendix A.
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Figure 1: Constraints on NP from current data allowing for new physics in all loop
processes. Left, In the r2

s − 2θs plane. Right in the cos(2θs) − sin(2θs) plane. The dark
green, light green and yellow regions correspond to probability higher than 0.32, 0.046,
and 0.0027, respectively. The SM point, 2θs = 0, r2

s = 1, is marked with the solid red
dot. Both Figures have been taken from [15].
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Figure 2: Constraints on NP from current data. Left, In the hs, σs plane. Right indicating
also the allowed As

SL as a function of hs. The dark, medium, and light shaded areas have
CL > 0.90, 0.32, and 0.05, respectively. The SM region is hs = 0, σs undefined. Both
Figures have been taken from [1].

3.1 Decay Rates

3.1.1 Decay Rates without Detector Effects

The time evolution of a B0 that is a flavour eigenstate at t = 0 is given by:

|B0(t)〉 =
1

2p

(
e−(iML+ 1

2
ΓL)t|BL〉+ e−(iMH+ 1

2
ΓH)t|BH〉

)
|B0

(t)〉 =
1

2q

(
e−(iML+ 1

2
ΓL)t|BL〉 − e−(iMH+ 1

2
ΓH)t|BH〉

)
(30)
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Figure 3: Constraints on NP from current data in the complex ∆s-plane. The bound
from ∆Ms is given by the red (dark-grey) annulus around the origin. The bound from
|∆Γs|/∆Ms is given by the yellow (light-grey) region and the bound from as

fs is given
by the light-blue (grey) region. The solid lines are an extraction of the angle φ∆

s from
|∆Γs| with a four–fold ambiguity and the dashed line φ∆

s from the angular analysis in
Bs → J/Ψφ. The SM point, ∆s = 1, is marked with the solid dot. This Figure has been
taken from [11].

where |B0(t)〉 is an oscillating B meson that was a B0 at time t = 0, and |B0
(t)〉 a B-meson

that was a B
0

at t = 0. In terms of flavour eigenstates:

|B0(t)〉 = g+(t)|B0〉 + q
p

g−(t)|B0〉
|B0

(t)〉 = p
q

g−(t)|B0〉 + g+(t)|B0〉
(31)

with

g+(t) = e−im t− 1
2
Γ t

{
− cosh

(
1
4
∆Γ t

)
cos
(

1
2
∆m t

)
− i sinh

(
1
4
Γ t

)
sin
(

1
2
∆m t

)}
g−(t) = e−im t− 1

2
Γ t

{
− sinh

(
1
4
∆Γ t

)
cos
(

1
2
∆m t

)
+ i cosh

(
1
4
Γ t

)
sin
(

1
2
∆m t

)}
(32)

Denoting the decay amplitude of a B0-flavour eigenstate to a final state f with 〈f |HI |B0〉 =

Af (HI represents the interaction Hamiltonian) and of a B
0

to f̄ with Āf̄ , etc, decays to
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flavour eigenstates are characterised by Af̄ = Āf = 0. For such decays:

Γ
(
B0 → f

)
(t) = Nf |Af |2|g+|2 (33)

Γ
(
B0 → f̄

)
(t) =

∣∣∣∣qp
∣∣∣∣2Nf |Āf̄ |2|g−|2 (34)

Γ
(
B

0 → f̄
)

(t) = Nf |Āf̄ |2|g+|2 (35)

Γ
(
B

0 → f
)

(t) =

∣∣∣∣pq
∣∣∣∣2Nf |Af |2|g−|2

(36)

where Nf is a normalisation factor which is identical for all 4 decay rates. For the next
step we use: ∣∣∣∣qp

∣∣∣∣2 =
(
1− afs

2

)2

= 1− afs +O
(
a2

fs

)
∣∣∣∣pq
∣∣∣∣2 =

1(
1− afs

2

)2 = 1 + afs +O
(
a2

fs

)
(37)

Replacing
∣∣∣ qp∣∣∣2 and

∣∣∣pq ∣∣∣2 with the first-order expressions in afs, and writing out |g±|2, we

find:

Γ
(
B0 → f

)
(t) = Nf |Af |2e−Γ t 1

2

{
cosh

(
1

2
∆Γ t

)
+ cos (∆mt)

}
(38)

Γ
(
B0 → f̄

)
(t) = Nf (1− afs)

∣∣Āf̄

∣∣2 e−Γ t 1

2

{
cosh

(
1

2
∆Γ t

)
− cos (∆mt)

}
(39)

Γ
(
B

0 → f̄
)

(t) = Nf

∣∣Āf̄

∣∣2 e−Γ t 1

2

{
cosh

(
1

2
∆Γ t

)
+ cos (∆mt)

}
(40)

Γ
(
B

0 → f
)

(t) = Nf (1 + afs) |Af |2e−Γ t 1

2

{
cosh

(
1

2
∆Γ t

)
− cos (∆mt)

}
(41)

3.1.2 Finite Time Resolution

To obtain the measured decay rates with finite time resolution we need to convolve the
expression 38 - 41 with an appropriate resolution function, here we choose a Gaussian
(more complicated models can be obtained easily from this by adding up Gaussians of
different width). The decay rates as a function of the measured time t are therefore
obtained by solving:

Γj(t) = fj(afs)

∞∫
0

e−Γ t′
(

cosh

(
1

2
∆Γ t′

)
± cos (∆mt′)

)
1√
2πσ

e
(t′−t)2

2σ2 dt′ (42)

where the index j labels the four decay rates given in Equations 38 - 41, and fj is a time-
independent parameter that is different for each of the four decay modes. The details of
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the calculations are given in Appendix B. The result is:

Γj(t) = fj(afs)e
−Γt e

1
2
Γ2σ2

[
e

1
8
σ2(∆Γ)2

{
1

2
e

1
2
∆Γ(t−σ2Γ)Freq

(
t

σ
− σ

(
Γ− 1

2
∆Γ

))
+

1

2
e−

1
2
∆Γ(t−σ2Γ)Freq

(
t

σ
− σ

(
Γ +

1

2
∆Γ

))}

± e−
1
2
∆m2σ2

Re

{
ei∆m(t−Γσ2)

×

(
1

2
− i

1

2
erfi

(
∆mσ + i

(
t
σ
− σΓ

)
√

2

))}]
(43)

where Freq is the frequency function, defined by

Freq(y) ≡
y∫

−∞

e−
1
2
x2

dx (44)

and erfi is the imaginary error function defined by:

erfi(z) = −ierf(iz) (45)

Both functions can be calculated with standard algorithms, available for example in root
(see Appendix B for details). The expression simplifies significantly if we assume that
t� σ, because then the Freq(y) terms tend towards 1 and erfi(z) terms towards i.

Γj(t) =

fj(afs)e
−Γt + 1

2
Γ2σ2

[
e

1
8
σ2(∆Γ)2 cosh

(
1

2
∆Γ

(
t− σ2Γ

))
± e−

1
2
∆m2σ2

cos
(
∆m

(
t− Γσ2

))]
for t� σ (46)

While it is perfectly possible to calculate the full expression 43 using the software referred
to in Appendix B, for the purpose of this note we use the simpler expression 46 throughout.
This is sufficiently accurate for decay times t ≥ 4σ (then Freq ≈ 1 and erfi ≈ i to a very
good approximation). To ensure this assumption is valid we apply a minimum lifetime
cut of t > 5σ. Since the data selection in all channels considered uses impact parameter
cuts to select long-lived particles anyway, this additional cut has only a very small effect
except for the set of toy MC experiments with the worst lifetime resolution. In the final
data analysis one might have to use the full expression 43 to make best use of all available
data, but for the purpose this study we believe these simplifications are acceptable.
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3.2 Measuring afs with Untagged Decay Rates

Measuring afs requires decays to flavour-specific states. This means that, if the observed

decays are B0 → f and B
0 → f̄ , the direct decays B0 → f̄ and B

0 → f must be forbidden.
Additionally, we require that there is no direct CP violation in the decay, i.e.:

|Af | =
∣∣Āf̄

∣∣ (47)

where Af is the amplitude for B0 → f and Āf̄ the B
0 → f̄ amplitude. Suitable decays are

semileptonic B0
d or B0

s decays like B0 → X`+ν`, as well as, in the B0
s system, B0

s → D+
s π

−

[2]. For such decays, afs can be extracted from the untagged decay rate asymmetry:

Afs(t) =
Γ(B0 or B

0 → f)− Γ(B0 or B
0 → f̄)

Γ(B0 or B
0 → f) + Γ(B0 or B

0 → f̄)
(48)

Note that acceptance effects (as long as they are charge-symmetric) cancel, which is of
particular importance for hadronic decays at LHCb where the impact-parameter based

trigger biases the lifetime distribution. If production rate for B0 and B
0

are the same,
and the detection efficiency of f is the same as that for f̄ , this is

Afs(t) =

(
Γ(B0 → f) + Γ(B

0 → f)
)
−
(
Γ(B

0 → f̄) + Γ(B0 → f̄)
)

(
Γ(B0 → f) + Γ(B

0 → f)
)

+
(
Γ(B

0 → f̄) + Γ(B0 → f̄)
) (49)

where the rates Γ are those given in Equations 38 - 41, modified according to 46 to take
into account finite time resolutions, leading to

Afs(t) =
afs

2
− e

− 1
2
σ2

“
(∆m)2+( 1

2
∆Γ)

2
” [afs

2

] cos (∆m (t− σ2Γ))

cosh
(

1
2
∆Γ (t− σ2Γ)

) (50)

for the case that there is no production or detection asymmetry.

3.2.1 Production and Detection Asymmetry

At a p−p collider, a production asymmetry between B0 and B
0

mesons is to be expected.
And any realistic detector is likely to have a detection asymmetry (charge asymmetry).
Defining

• N rate of B0 production, N̄ rate of B
0

production

• εf detection efficiency for final state f , ε̄f detection efficiency for final state f̄

the total, measured time-dependent asymmetry is given by

Afs(t) =

(
NεfΓ(B0 → f) + N̄εfΓ(B

0 → f)
)
−
(
N̄ ε̄fΓ(B

0 → f̄) +Nε̄fΓ(B0 → f̄)
)

(
NεfΓ(B0 → f) + N̄εfΓ(B

0 → f)
)

+
(
N̄ ε̄fΓ(B

0 → f̄) + N̄ ε̄fΓ(B0 → f̄)
)
(51)
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It is useful make the following definitions:

The production asymmetry: Ap ≡
N − N̄

N + N̄
. (52)

The detection asymmetry: Ac ≡
εf − ε̄f
εf + ε̄f

. (53)

Equivalently one can define the following parameters, as in [2]:

δp ≡
N̄

N
− 1 δc ≡

ε̄f
εf
− 1 (54)

which are the deviations of the production and detection efficiency ratios from unity.
These parameters are related to the production and detection asymmetries by

Ap =
−δp

2 + δp
, δp =

−2Ap

1 + Ap

(55)

Ac =
−δc

2 + δc
δc =

−2Ac

1 + Ac

(56)

In some cases it will be more convenient to use the “A” parameters and in others the “δ”
parameters. Both are essentially equivalent, and to first order proportional to each other.
For simplicity, we will often refer to either of them as “asymmetry” - which one is meant
will be clear from the symbol used.

Further we define

A′p ≡ − δp+ 1
2
δpδc

2+δp+δc
= Ap

1−ApAc
which is O(δ)

A′c ≡ − δc+
1
2
δpδc

2+δp+δc
= Ac

1−ApAc
which is O(δ)

δA ≡ A′p − A′c = − δp−δc

2+δp+δc
= Ap−Ac

1−ApAc
which is O(δ)

D ≡ δpδc

2+δp+δc
= ApAc

1−ApAc
which is O(δ2)

(57)

where we also indicate which order in the parameter δ ≡ max(δp, δc) each expression is,
and we assume that δc and δp are of similar magnitude. With these definitions we find
the following relation for the time-dependent flavour-specific asymmetry Afs(t):

Afs(t) =

afs

2
+ A′c −

[afs

2
− A′p

]
e
− 1

2
σ2

“
(∆m)2+( 1

2
∆Γ)

2
”

cos(∆m (t−σ2Γ))
cosh( 1

2
∆Γ(t−σ2Γ))

1 +D − δA
afs

2
+
[
D + δA

afs

2

]
e
− 1

2
σ2

“
(∆m)2+( 1

2
∆Γ)

2
”

cos(∆m (t−σ2Γ))

cosh( 1
2
∆Γ(t−σ2Γ))

(58)

Neglecting all terms O
(
a2

fs

)
and higher, as well as terms that contain at least one factor

afs and one factor of O(δ2) and higher (e.g. O(afsδ
2), O(afsδ

3, . . .)) we find:

Afs(t) =

[afs

2
+ Ac

]
−
[afs

2
− Ap

]
e
− 1

2
σ2

“
(∆m)2+( 1

2
∆Γ)

2
”

cos(∆m (t−σ2Γ))
cosh( 1

2
∆Γ(t−σ2Γ))

1 + AcApe
− 1

2
σ2

“
(∆m)2+( 1

2
∆Γ)

2
”

cos(∆m (t−σ2Γ))

cosh( 1
2
∆Γ(t−σ2Γ))

(59)
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If we also ignored terms O(δ2) and higher, in which case A′p ≈ Ap ≈ −δp/2 and
A′c ≈ Ac ≈ −δc/2, we would recover the expression given in [2]. However, since we expect
the production asymmetry to be O(%), it is unlikely that δ2 � afs. For the case that
there is no detection asymmetry, the above expression simplifies considerably:

Afs(t) =
[afs

2

]
− e

− 1
2
σ2

“
(∆m)2+( 1

2
∆Γ)

2
” [afs

2
− Ap

] cos (∆m (t− σ2Γ))

cosh
(

1
2
∆Γ (t− σ2Γ)

) for Ac = 0

(60)
Similarly, for the case that there is no production asymmetry we get:

Afs(t) =
[afs

2
+ Ac

]
− e

− 1
2
σ2

“
(∆m)2+( 1

2
∆Γ)

2
” [afs

2

] cos (∆m (t− σ2Γ))

cosh
(

1
2
∆Γ (t− σ2Γ)

) for Ap = 0

(61)
So for a situation with no production asymmetry (e.g. an e+e− or a pp̄ collider), one can
in principle fit both at the same time the detection asymmetry and afs.

However, the LHC is a proton-proton collider with six valence quarks and zero valence
antiquarks in the the initial state. Therefore different production rates of B0 and B̄0 are
expected. This leads to a non-zero production asymmetry, estimated to be of O(1%) [17].
For the purpose of the MC study presented in Section 5.1, we assume Ap = 1% and that
the detection asymmetry Ac is well known, and present the statistical uncertainty for a
simultaneous fit to the production asymmetry and afs. For simplicity, we assume that
Ac = 0. A strategy of extracting the detection asymmetry from simultaneous fits to Ad

fs

and As
fs is discussed in Section 6.

4 Current Measurements of As,d
SL

The term semileptonic asymmetry, ASL, is used to describe the measured charge asym-
metry (usually time-integrated) in semileptonic b-decays. We use the terms Aq

SL as the
flavour-specific asymmetries which are extracted through measurement of ASL and are
equivalent to aq

fs. The semileptonic decay is flavour-specific due to the charged W-boson
emission, whose charge is determined by the flavour of the b-quark. The BABAR [5],
BELLE [6], CLEO [18], D0 [19] and CDF [20] experiments studied the di-lepton asym-
metry, that is examining events where two b-mesons are produced of correlated flavour.
Where both these mesons decay semileptonically to leptons with the same charge, one of
the two mesons must have oscillated into its partner. For a B0

s meson it likely oscillated
several times.

At the Υ(4S) resonance, i.e. for the BABAR, BELLE and CLEO experiments, only
pairs of B0

d-B
0
d and B+-B− mesons are produced. Events with two leptons (electrons

or muons) of opposite or same charge are labelled Right-Sign (RS) and a Wrong-Sign
(WS), respectively. Examining the time-integrated decay rates in the di-lepton sample
(untagged), these experiments measure [5, 18]:

A
Υ(4S)
SL = Ad

SL =
ΓWS

d Γ̄RS
d − Γ̄WS

d ΓRS
d

ΓWS
d Γ̄RS

d + Γ̄WS
d ΓRS

d

≈ Ad
fs (62)
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where we neglected direct CP violation in B0
d decays, Γ̄RS

d = ΓRS
d [15]. The detection

asymmetry is measured and corrected for. Calculating the naive average of BABAR,
BELLE, and CLEO values [15] find:

Ad
SL = +(1.1± 5.5)× 10−3 (63)

At the Tevatron, which is a pp̄ collider, DØ and CDF examine the di-muon sample
which contains a mixture ofB0

s andB0
d decays and measure the time-integrated asymmetry

of the rate of same charge muon pairs Γ++ and Γ−− [20, 23,24]:

Γ++ = Γ(bb̄→ µ+µ+X)

Γ−− = Γ(bb̄→ µ−µ−X)

ATeV
SL =

Γ++ − Γ−−

Γ++ + Γ−−
(64)

ADØ
SL = −(9.2± 4.4(stat)± 3.2(syst))× 10−3 ÷

[
1 +

fsZs

fdZd

]
(65)

ACDF
SL = +(8.0± 9.0(stat)± 6.8(syst))× 10−3 (66)

Note that in Equation 65 the definition of ADØ
SL differs by a scale factor from the standard

one 2. The ASL measurements are related to as,d
fs through:

ATeV
SL =

fTeV
d ZTeV

d ad
fs + fTeV

s ZTeV
s as

fs

fTeV
d ZTeV

d + fTeV
s ZTeV

s

≈ 0.6 ad
fs + 0.4 as

fs (67)

[ = (0.582± 0.030)ad
fs + (0.418± 0.047)as

fs ] (68)

These relations are a Standard Model prediction using the parameters fq, the fraction of
B0

q in the sample, and Zq, relating the mixing and decay times [15], which are determined
experimentally [21,22]. This makes use of an approximation taking the SU(3) limit–that
the semileptonic widths of the B0

d and B0
s meson are equal Γs

SL = Γd
SL. Equation 68 is

given by [11]. Using this approach to combine the measured ASL values at the Tevatron
with the average of Ad

SL from the B-factories allow to indirectly determine As
fs [20, 23] 3:

DØ-indirect: As
SL = −(6.4± 10.1)× 10−3 (69)

CDF-indirect: As
SL = −(20± 21(stat)± 16(syst)± 9(inputs))× 10−3 (70)

or from [15] using an earlier DØ result with the naive B-factory average, Equation 63:

As
SL = −(8± 11)× 10−3 (71)

Alternatively using the SM value for ad
fs (Equation 20) one finds from [11]:

As
SL |ad

fs
= −(5.2± 3.9)× 10−3 (72)

2We thank Guennadi Borissov for explaining this feature of the D0 analysis.
3Different B-factory averages for Ad

fs have been used in Equations 69 to 72.
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Recently DØ has also presented a time-integrated direct measurement of As
SL in the

channel B0
s → D±

s µ
∓νµ [24]. They measure:

DØ-direct: As
SL =

N(µ+D−
s )−N(µ−D+

s )

N(µ+D−
s ) +N(µ−D+

s )
= As

fs (73)

where N(µ±D∓
s ) is the number of time-integrated B0

s → D±
s µ

∓νµ decays. Here the
detector asymmetry is again corrected.

This measurement has a relatively small systematic contributions, in comparison to
the dilepton sample, however the total error is dominated by the statistical error. For
27K events recorded in 1.3 fb−1, with a B/S ∼ 0.2, DØ obtain [23]:

DØ-direct: As
SL = (2.45± 1.93(stat)± 0.35(syst))× 10−2 (74)

5 Time-dependent Analysis

5.1 Monte Carlo Study

The time-dependent decay rates defined in equation 46 are created using standard Monte
Carlo methods.

The detection efficiency vs lifetime at LHCb is biased against short lifetimes because
LHCb’s trigger selects events which have tracks with large impact parameters in order to
select (long-lived) B mesons. To model this effect we use an acceptance function, ε, which
takes the form:

ε(t) = (β(t−t0))3

1+(β(t−t0))3
for t ≥ t0

ε(t) = 0 for t < t0 (75)

Figures 4 to 7 show example decay rate and asymmetry distributions for various set-
tings. The distributions in figures 4 and 5 were created using a lifetime resolution of 36 fs.
Figures 6 and 7 show the same distributions created using a poorer resolution (120 fs).
It is worthwhile to note that increasing the lifetime resolution such that σ ≈ 2π

∆m
effec-

tively “washes out” the oscillations, thereby decreasing our sensitivity to any parameter
proportional to the cosine term in equation 60.

5.2 Sensitivity to afs

In our Monte Carlo studies we considered the following three scenarios:

• 815k B0
s → D−

s µ
+νµ events with a lifetime resolution of 270 fs [3]

• 185k B0
s → D−

s µ
+νµ events with a lifetime resolution of 120 fs [3] and

• 140k B0
s → Dsπ events with a lifetime resolution of 36 fs [4].
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Figure 4: B0
s → Dsπ decay distribution

generated using the number of events ex-
pected in 2 fb−1 and a lifetime resolution
of 36 fs.
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Figure 5: Generated asymmetry dis-
tribution for the Bs → Dsπ channel
with the theoretical prediction (smooth
curve) superimposed. The lifetime reso-
lution is 36 fs.
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Figure 6: B0
s → D−

s µ
+νµ decay distri-

bution generated using the number of
events expected in 2 fb−1 and a lifetime
resolution of 120 fs.
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Figure 7: Generated asymmetry distri-
bution for the B0

s → D−
s µ

+νµ channel
with the theoretical prediction (smooth
curve) superimposed. The lifetime reso-
lution is 120 fs.

The differing lifetime resolutions in the two semi-leptonic scenarios is due to imposing a
cut on the reconstructed invariant mass of the Dsµ combination. The lifetime resolution
of events which pass the cut (m (Dsµ) > 4.5GeV) is improved since less momentum is
lost to the neutrino.

We investigated several parameter settings for each scenario [see table 3]. To test the
validity of our study, we performed pull studies with at least 100 toy experiments each
for each scenario and found the pull distributions to be consistent with a mean of zero
and a width of one. Examples are given in figures 10 and 11 for scenario B0

s → Dsµν.
From table 3 it can be seen that the measurement of the production asymmetry is

highly dependent on the lifetime resolution. The precision on afs has no dependence on
the time resolution, and for the case considered here, where AC = 0, the time-independent
part in the asymmetry (eqn. 60) ensures that we can fit afs even if the oscillations cannot
be resolved at all. Both σafs

and σAp are largely independent of the other input parameters

and scale with 1/
√
N .
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Table 1 contains a summary of the obtained resolution per million events for each
scenario and the corresponding resolutions when scaled to LHCb yields.

Prob   0.0379

Constant  1.2±  14.3 
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Figure 8: Ap resolution for the B0
s →

Dsµν(> 4.5 GeV) scenario.
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Figure 9: afs resolution for the B0
s →

Dsµν(> 4.5 GeV) scenario.
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Figure 10: Ap pull distribution for the
B0

s → Dsµν(> 4.5 GeV) scenario.
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Figure 11: afs pull distribution for the
B0

s → Dsµν(> 4.5 GeV) scenario.

Scenario B0
s → . . . Resolution/ps σafs

/1M σafs
/2 fb−1 σAp/1M σAp/2 fb−1

D−
s µ

+νµ (< 4.5 GeV) 0.270 0.20% 0.22% None None
D−

s µ
+νµ (> 4.5 GeV) 0.120 0.20% 0.47% 1.29% 3.01%

Dsπ 0.036 0.20% 0.53% 0.20% 0.53%

Table 1: afs and Ap resolution from selected scenarios after 1M events and 2 fb−1 at
LHCb respectively.

5.3 Non-Zero Charge Detection Asymmetry

Ignoring terms of order a2
fs and higher as well as afsδ

2 and higher, as in equation 59 and
used throughout this note, the time-independent part of the asymmetry is given by

Atime−independent =
afs

2
+ AC (76)
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Scenario resolution/ps AP Fit Result afs Fit Result

B0
s → Dsµν 0.270 no resolution 0.46%± 0.22%

B0
s → Dsµν 0.120 0.86%± 3.01% 0.54%± 0.47%

B0
s → Dsπ 0.030 0.96%± 0.53% 0.52%± 0.54%

Table 2: Effect of non-zero (but well-known) charge detection asymmetry on fit parameter
resolution for the three physics scenarios. AC was set to 2%.

and the only effect of a precisely known charge-detection aysmmetry is to add a constant
to the measurement of afs. If we included higher order terms, we would also find that a
non-zero AC introduces a slight dependence of the time-independent part on AP , but this
effect is O(afsδ

2), and can safely be ignored.
Table 2 shows results of fits of AP and as

fs assuming a precisely known charge detection
asymmetry of 2% for three Monte Carlo samples according to the three physics scenarios
considered. The samples with good time resolution (σt = 36 fs and σt = 120 fs) were fit
without any constraint on AP ; in the fit to the sample with σt = 270 fs we constrained
AP to 1%± 3%. We find that the resolutions on afs and AP for AC = 2% are compatible
with those observed for AC = 0.

5.4 Comparison to Tevatron Results

If systematic uncertainties can be controlled at a similar level, the LHCb result for 2 fb−1

of σafs
∼ 0.2% will be a considerable improvement over the result we expect from DØ’s

direct measurement of as
fs by the end of Run II. Scaling their current statistical error to

6 fb−1, we expect σas
fs(DØ−direct) ∼ 1%. Scaling the statistically more powerful indirect

measurements at the Tevatron, which currently achieve a precision of better than 0.5%
(see Sec 4), is more complicated because those measurements require outside input. Also,
their systematic and statistical error are at a similar level.

For LHCb it is of course also the control of systematic uncertainties that is the main
challenge in such a measurement, and DØ’s analysis takes a lot of care to keep them low,
including frequent switches of the magnetic field. How systematics could be controlled
at LHCb using a simultaneous analysis of B0

s and B0
d decays is discussed in the following

sections.

6 Measuring afs with B0
s → D±

s µ
∓νµ and B0

d → D±µ∓νµ
decays

In previous sections we have discussed time-dependent studies in the case where either
the detection asymmetry is negligible or can be measured precisely in control channels
elsewhere. In this section we consider the case where all the inherent asymmetries pol-
luting the measurement are non-zero and/or measured to low precision, and discuss our
strategies to limit or eliminate the resultant systematic errors.

These strategies are particularly important for the semileptonic channels, B0
s →
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Figure 12: LHCb D±
s µ

∓ selection results from recent Monte Carlo studies from [3], repro-
duced with permission. The invariant mass distribution of K+K−π± in opposite-charge
D±

s µ
∓ combinations, with 34 million inclusive bb events is plotted, where all selection

cuts except the Ds mass cut have been applied. Left, with trigger requirement. Right,
without trigger requirement. The solid line sums all opposite-charge D±

s µ
∓ combinations.

The red shaded area covers the Monte Carlo true signals. The dotted green line shows
the background combinations with fake Ds . The dash-dotted blue line shows the back-
ground combinations with true Ds and here there is an obvious peak in the Ds mass
window. The lower mass peak around 1869 MeV corresponds to D−→ K+K−π− decay
from B0

d → D±µ∓νµ.”

D±
s µ

∓νµ and B0
d → D±µ∓νµ. The recently reported LHCb selection for B0

s → D±
s µ

∓νµ

with D±
s → K+K−π± [3] is reproduced in Figure 12. This shows that peaking back-

grounds are the main contribution to the background to signal ratio B/S of ∼ 0.3.
We discuss performing a measurement of ∆As,d = As

fs − Ad
fs by a subtraction of the

charge-specific asymmetry in B0
s → D±

s (K+K−π±)µ∓νµ and B0
d → D±(K+K−π±)µ∓νµ de-

cays which have the same final states. In contrast to the B0
s decay, no dedicated yield

study for B0
d → D±(K+K−π±)µ∓ν has been performed. To estimate the relative yields, we

reconstructed B0
s → D±

s (K+K−π±)µ∓νµ and B0
d → D±(K+K−π±)µ∓νµ in the same sample

of generic bb̄ MC events, using equivalent cuts. For the B0
d mode, we found 228 signal and

28 background events; for the B0
s mode, we found 240 signal and 82 background events.

This indicates that we can expect a similar number of B0
d → D±(K+K−π±)µ∓νµ events

as B0
s → D±

s (K+K−π±)µ∓νµ, with similar or better signal to background.
The measurement of ∆As,d can then be combined with B-factory results on ad

fs, or

SM calculations of ad
fs such as [11], to allow a determination of as

fs. We also briefly cover
the extra complications in a time-integrated analysis in Sec. 6.2.
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6.1 First-Order Contributions to Afs

For a non-zero charge asymmetry, δq
c 6= 0, and production asymmetry δq

p 6= 0, and perfect
proper time resolution (although our arguments hold for an imperfect time resolution also)
we find that the measured untagged time-dependent asymmetry, Aq

fs, given in Equation 59
can be simplified to first order in δq and aq

fs:

Aq
fs(t) ≈

aq
fs

2
− δq

c

2
−
(
aq

fs

2
+
δq
p

2

)
cos(∆mqt)

cosh(∆Γqt/2)
(77)

for a precise measurement of aq
fs terms in higher than first order of δc,p should not be

ignored. The second-order case is discussed in Section 6.3
Now we allow for the case that background enters our sample. With N(Bg in f) and

N(Bg in f̄) being the number of background events in the final state f and f̄ , respectively,
we define the deviation of the background ratio from unity:

δb =
N(Bg in f̄)

N(Bg in f)
− 1

(1 + δb) = (1 + δb
c)(1 + δb

p) (78)

where δb
p and δb

c represent the deviation from unity of the production and detection ratio
in the background, respectively, in analogy to the previously defined δp and δc for signal.

Including the background effects in the the flavour-specific asymmetry, Ab,q
fs (t) we find

Ab,q
fs (t) =

(
S

S +B

)q

Aq
fs(t) +

(
B

B + S

)q
δq
b

2
(79)

where B/S is the background-to-signal ratio. From Equations 77 and 79 we can see
that the major pollutants of the measurement of aq

fs are the charge asymmetry δq
c , the

production asymmetry δq
p and the background asymmetry δb.

6.2 Measuring ∆As,d in Semileptonic Decays

Equations 77 and 79 show that the time-dependent part has a contribution from the
production asymmetry, δq

p, which can be separated from the time-independent contri-
butions of the charge asymmetry, δq

c , and background asymmetry, δq
b . In the B0

s →
D±

s (K+K−π±)π∓ channel the charge asymmetry will be reduced due to the charge-
symmetric final state. The analysis presented in section 5.1 will enable simultaneous
extraction of flavour-specific asymmetry, as

fs, and the production asymmetry, δs
p. On the

other hand, in the semileptonic channels the charge asymmetry is expected to be larger.
In addition, this channel has a background peaking in the D±

s mass (Figure 12). This
makes this measurement much more challenging. Here we propose a subtraction method
using a time-dependent analysis of B0

s → D±
s µ

∓νµ and B0
d → D±µ∓νµ, where the D±

s and
D± decays are restricted to the same final state, D±

s , D
± → K+K−π±. We show below

that this method removes the contribution from the charge asymmetry, δc.
Let us examine the time-independent part of Ab,q

fs (t) including the factor [(S)/(S +

B)]q which we will call Ab,q
SL,/t

(Equation 79). The term Ab,q
SL,/t

has no contribution from
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the production asymmetry but is dependent on the charge asymmetry, the background
asymmetry, and the background to signal ratio B/S:

Ab,q
SL,/t

≈
(
aq

fs

2
− δq

c

2

)
+
δq
b

2

(
B

S

)q

(80)

LHCb’s mass resolution, shown in Figure 12, will enable a clean separation of the B0
s →

D±
s µ

∓νµ andB0
d → D±µ∓νµ decays in the same final statesD±

s , D
± → K+K−π± [3]. Mea-

suring simultaneously the flavour-specific asymmetry for both B0
s → D±

s (K+K−π±)µ∓νµ

and B0
d → D±(K+K−π±)µ∓νµ now provides a means of removing the primary error from

charge asymmetry. We propose to measure the quantity:

∆As,d = Ab,s
SL,/t

− Ab,d
SL,/t

=
δd
c

2
− δs

c

2
+
as

fs

2
−
ad

fs

2
+
δs
b

2

(
B

S

)s

− δd
b

2

(
B

S

)d

≈
as

fs

2
−
ad

fs

2
+
δs
b

2

(
B

S

)s

− δd
b

2

(
B

S

)d

(81)

The big advantage of using ∆As,d as an observable is that the the contribution from the
charge asymmetry will effectively be removed. Since the B0

s and B0
d meson decay into the

same final-state particles, δs
c and δd

c will cancel.
We also have to take into account the time-dependent part of ∆As,d. Over a large range

of proper time resolutions we may perform an integration of the fast Bs oscillations with
negligible effect on ∆As,d but the slow Bd oscillations must be correctly taken into account.
We plan to verify the proposed analysis method with simulation. This subtraction of the
asymmetry in semileptonic B0

s and B0
d decays will provide a complimentary method to

measuring the time-dependent asymmetry As
fs(t) in B0

s → D±
s π

∓. We can combine ∆As,d

with results for ad
fs from the di-lepton asymmetries measured at the B-factories to extract

the flavour-specific asymmetry as
fs in B0

s mixing.
By examining Equation 81 one realises that both, the background asymmetries δs

b and
δd
b and the background to signal ratio B/S enter into the measurement of ∆As,d in the

semileptonic decays B0
s → D±

s µ
∓νµ and B0

d → D±µ∓νµ, and of As
fs(t) in the hadronic

decay B0
s → D±

s π
∓, respectively. However, when measuring As

fs(t) in the hadronic decay
B0

s → D±
s (K+K−π±)π∓ we can remove the background by fitting to the mass spectrum

or by performing a sideband subtraction which is equivalent to measuring δs
b and B/S in

the data.
For the semileptonic channels the situation is more challenging as there are back-

grounds which peak at the D+
s and D+ mass for B0

s → D±
s µ

∓νµ and B0
d → D±µ∓νµ,

respectively. Fitting the mass spectrum will remove the combinatoric background but
not these peaking backgrounds. Thus possible asymmetries in these backgrounds and the
ratio B/S have to be very well understood so that these will not dominate the precision of
a measurement of as

fs− ad
fs from ∆As,d. In reference [3] we note that most of the peaking

background arises from decays of a B meson into a D+
s and a D0/D±/D±

s where the latter
decays semileptonically to produce a muon. These events are not flavour-specific and can
be treated as background, but careful studies will be required to determine the fraction of
the different components in the background. Note also that there will be a small fraction
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of B0
d → D+

s µ
−X in the peaking background of of B0

s → D±
s µ

∓νµ. It will be important
to not only use the D+ → K+K−π+ peak to subtract the asymmetry in B0

d → D±µ∓νµ,
but also to fit the sidebands as control samples for cross checks.

In addition the D0 analysis shows that reversing the magnetic field will be imperative
for this analysis [19]. This will allow to separate the data sample into several categories.
For example dividing the selected events into eight samples, i.e. two magnetic field po-
larities, two charges of the muon and the sign of muon-momentum in the horizontal
(bending) plane (muons going left and right) will allow us to determine the detection
and background asymmetries for positive and negative muons simultaneously. The same-
charge combinations of D±

s µ
± or D±µ± can also be used as control sample to study the

asymmetry in the background. Ways of measuring the charge asymmetry in muons, pions
and kaons are being investigated. One possibility is to use partially reconstructed decays,
where we ignore one of the final state particles in the reconstruction and triggering of the
decay chain. The reconstruction efficiency for each charge can be measured by counting
how often the particle ignored in the reconstruction of the decay is actually found by the
track reconstruction, while the total number of partially reconstructed decays provides
the normalisation. Channels being studied for this purpose include B0

s → J/ψφ and
D∗+ → D0π+, followed by D0 → K−π+.

6.3 Second-Order Contributions to ∆As,d

We return to the consideration of all systematic effects, considering the second-order
corrections in terms of δq

c and δq
p. As the value of aq

fs within the Standard Model is
around the 10−4 level, second order terms in the inherent asymmetries are important to
the measurement.

Completing our derivation again, including terms of order aq
fs, δ, δ

2, and expanding
up to order δ2, in both the numerator and the denominator of the measured asymmetry
we find:

Aq
SL

′ =
2aq

fs − δc
[
2 + δq

p

]
4 + 2δq

p + δc [2 + δq
p]
−
(

2aq
fs + δq

p [2 + δc]

4 + 2δc + δq
p [2 + δc]

)
cos(∆mqt)

cosh(∆Γqt/2)
(82)

(c.f. Equation 59) Here we assume that the detection asymmetry for B0
s and B0

d

decaying to the same final state are identical. We then investigate the time-independent
part of Equation 82, and perform the subtraction of charge asymmetry in the two channels
as before. The first and second order terms in the numerator vanish, producing:

∆As,d ′
= As

SL,/t
′ − Ad

SL,/t

′
=

(
2

(2 + δc)2 + 2δs
p + 2δd

p + δs
pδ

d
p

)(
as

fs − ad
fs

)
(83)

The terms in the denominator introduce a small bias in the measurement of as
fs − ad

fs

which can be corrected for. This measurement of ∆As,d ′
is a particularly useful result

as there are no contributions from differences in the production asymmetry which are
expected in these two channels. Now including background asymmetry terms, to second
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order, we find (from Equations 81 and 83):

∆As,d ′
=

(
2

(2 + δc)2 + 2δs
p + 2δd

p + δs
pδ

d
p

)(
as

fs − ad
fs

)
+
δs
b

2

(
B

S

)s

− δd
b

2

(
B

S

)d

(84)

Remaining systematic effects not included in Equation 84 will be of order afs · δ, δ3 and
δs
c − δd

c . We will also inherit any uncertainty in our knowledge of the B/S ratios.
Here we summarise that the comparison of the asymmetry measurements in the two

channels, B0
s → D±

s (K+K−π±)µ∓νµ and B0
d → D±(K+K−π±)µ∓νµ, possible at LHCb,

provides a systematically much cleaner measurement of as
fs − ad

fs in semileptonic decays

in the realistic environment of the Large Hadron Collider. The measurement of ∆As,d

can be combined with the measurements in the hadronic mode B0
s → D±

s π
∓ at LHCb

and from measurements of ad
fs at the Υ(4S) resonance (B-factories) and the Tevatron to

extract hard constraints on the Standard-Model parameters as,d
fs and hence constrain wide

avenues of new physics.

7 Conclusions

We investigated the ability of LHCb to perform a measurement of the parameter as
fs

(equivalent to 2 · As
SL), which parameterises CP violation in B0

s mixing. We extract as
fs

from time-dependent, untagged decay-rate asymmetries in decays to semileptonic and
hadronic flavour eigenstates, as proposed in [8]. In the expression for the time-dependent
asymmetry, acceptance effects due to the LHCb trigger cancel. The measured asymmetry
depends on as

fs itself, the B-production asymmetry Ap and the charge detection asymme-
try Ac. Two of these three parameters can be extracted simultaneously, the third needs
to be measured externally.

In a Monte Carlo study we performed a simultaneous fit to as
fs and Ap. We performed

fits for zero charge detection asymmetry and a charge detection asymmetry of 2%. In
both cases, the value of AC was kept constant in the fit. Background effects were ignored.
We find a statistical precision on as

fs of ∼ 0.2% for 1M events. For 2 fb−1 of LHCb
data, this corresponds to σas

fs
∼ 0.2% in the B0

s→ D−
s µ

+νµ channel, and σas
fs
∼ 0.5% for

B0
s→ D−

s π
+. If systematic uncertainties can be controlled at a similar level, this will be a

considerable improvement over the expected precision of direct afs measurements at the
Tevatron by the end of Run II.

We found no significant dependence of σas
fs

on the value of Ap, and the result is in-
dependent of the time resolution. The precision on the production asymmetry, which is
extracted simultaneously, depends strongly on the time resolution. We found an uncer-
tainty on the production asymmetry of σAp ∼ 0.5% in each mode for 2 fb−1.

Besides the important measurement of as
fs itself, the measurement of the production

asymmetry provides valuable input to many other analyses. Interestingly, the measure-
ment of the production asymmetry with this technique remains possible even without
external constraints on the charge detection asymmetry as long as as

fs is small compared
to the required precision on the production asymmetry; then one can extract both AP and
AC under the assumption that afs ≈ 0. Since as

fs is expected to be tiny, this will provide
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sufficient precision for most measurements at LHCb, except of course the measurement
of afs itself which is the main focus of this paper.

In the afs sensitivity study presented here, the charge detection asymmetry is assumed
to be determined elsewhere. In reality, there will be an uncertainty on its value which is
likely to be the dominant systematic error for this analysis. To eliminate this systematic
error, we propose a measurement of the difference as

fs − ad
fs using B0

s and B0
d decays to

the same final state, e.g. B0
s→ D−

s µ
+νµ(Ds → KKπ) and B0

d→ D−µ+νµ(D → KKπ). In
this measurement, the systematic effects due to the charge detection asymmetry cancel.
Since in the Standard Model as

fs and ad
fs are expected to be of opposite sign, |as

fs −
ad

fs| is likely to be larger than either |afs| or |afb| - so, while the systematics cancel,
the physics contributions add up. In a real measurement, further systematics will have
to be considered, especially those coming from background. As discussed in this note,
the measurement of as

fs − ad
fs can be expected to be more robust against systematic

uncertainties stemming from possible CP asymmetries in background, than separate as
fs

and ad
fs measurements.
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A Notation

• |B0〉 is a B0
d or a B0

s flavour eigenstate.

• |B0〉 is a Bd or a Bs flavour eigenstate.

• |BH〉 and |BL〉 are the heavy and light mass eigenstates.

• |B0(t)〉 is an evolving, oscillating B-meson that was a |B0〉 at t = 0.

• |B0
(t)〉 is an evolving, oscillating B-meson that was a |B0〉 at t = 0.

• f a final state the B meson decays to, f̄ is its CP-conjugate.

• Af is the decay amplitude of a B0 flavour eigenstate to f , Af = 〈f |HI |B0〉, where
HI represents the interaction Hamiltonian

• Āf is the decay amplitude of a B
0

flavour eigenstate to f , Āf = 〈f |HI |B
0〉.

• Similarly, Af̄ = 〈f̄ |HI |B0〉, Āf̄ = 〈f̄ |HI |B
0〉

• Nf is a normalisation factor which is the same for all decay rates.

B Finite Time resolution

To obtain the measured decay rates with finite time resolution we need to calculate:

Γi = fi(afs)

∞∫
0

e−Γ t′
(

cosh

(
1

2
∆Γ t′

)
± cos (∆mt′)

)
1√
2πσ

e
(t′−t)2

2σ2 dt′ (85)

This can be expressed as

Γi(t) = fi(afs)Re

 1√
2πσ

∞∫
0

e−Γ t′
(

1

2
e

1
2
∆Γ t′ +

1

2
e−

1
2
∆Γ t′ ± ei∆m t′

)
e

(t′−t)2

2σ2 dt′


= fi(afs)Re

 1√
2πσ

∞∫
0

(
1

2
e−(Γ− 1

2
∆Γ) t′ +

1

2
e−(Γ+ 1

2
∆Γ) t′ ± e−(Γ−i∆m) t′

)
e

(t′−t)2

2σ2 dt′


(86)

Hence the problem reduces to calculating

1√
2πσ

∞∫
0

e−A t′e−
(t′−t)2

2σ2 dt′ (87)
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for different (sometimes complex) values of A. This can be re-written as:

1√
2πσ

e−A t+ 1
2
A2σ2

∞∫
0

e−
1

2σ2 (t′−(t−σ2 A))
2

dt′ (88)

Changing the integration variable to x ≡ t′

σ
:

1√
2πσ

∞∫
0

e−
1

2σ2 (t′−(t−σ2 A))
2

dt′ =
1√
2π

∞∫
0

e−
1
2(x−( t

σ
−σ A))

2

dx =
1√
2π

( t
σ
−σ A)∫

−∞+( t
σ
−σ A)

e−
1
2
x2

dx

For real A:

1√
2π

+( t
σ
−σ A)∫

−∞+( t
σ
−σ A)

e−
1
2
x2

dx =
1√
2π

( t
σ
−σ A)∫

−∞

e−
1
2
x2

dx = Freq

(
t

σ
− σ A

)
(89)

where Freq is the frequency function, defined by

Freq(y) ≡ 1√
2π

y∫
−∞

e−
1
2
x2

dx (90)

the Cernlib implementation of this function is available in root as TMath::Freq. The
frequency function is related to the more familiar error function by

F (y) =
1

2
+

1

2
erf

(
y√
2

)
(91)

which can also be found in root.
For complex A = Γ− i∆m we find

1√
2π

( t
σ
−σ A)∫

−∞+( t
σ
−σ A)

e−
1
2
x2

dx = −i1
2
erfi

(
∆mσ + i

(
t
σ
− σΓ

)
√

2

)
+

1

2
(92)

where erfi is the imaginary error function defined by:

erfi(z) = −ierf(−iz) (93)

This is related to the complex error function:

w(z) = e−z2

(1− ierfi(iz)) (94)
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which is implemented in root as TMath::FastComplexErrFunc, which returns a com-
plex data type, or TMath::FastComplexErrFuncRe and TMath::FastComplexErrFuncIm

which return doubles. With this, Equation 85 becomes:

∞∫
0

e−Γ t′
(

cosh

(
1

2
∆Γ t′

)
± cos (∆mt′)

)
1√
2πσ

e
(t′−t)2

2σ2 dt′ =

1

2
exp
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−
(

Γ− 1

2
∆Γ

)
t+

1

2
σ2

(
Γ− 1

2
∆Γ

)2
)
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(
t

σ
− σ

(
Γ− 1

2
∆Γ

))

+
1

2
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Γ +
1

2
∆Γ

)
t+

1

2
σ2

(
Γ +

1

2
∆Γ

)2
)
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(
t

σ
− σ

(
Γ +

1

2
∆Γ

))
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{
exp

(
−Γ t+

1

2
σ2Γ2 − 1

2
∆m2σ2

)
exp

(
i∆m

(
t− Γσ2

))
×

(
1

2
− i

1

2
erfi

(
∆mσ + i

(
t
σ
− σΓ

)
√

2

))}
(95)

Taking out common factors:

∞∫
0

e−Γ t′
(

cosh

(
1

2
∆Γ t′

)
± cos (∆mt′)

)
1√
2πσ

e
(t′−t)2

2σ2 dt′ =
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1
2
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e

1
8
σ2(∆Γ)2
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1

2
e

1
2
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(
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2
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1

2
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1
2
∆Γ(t−σ2Γ)Freq

(
t

σ
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(
Γ +

1

2
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1
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×

(
1

2
− i

1

2
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(
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t
σ
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)
√

2

))}]
(96)

The expression simplifies significantly if we assume that t � σ, because then the Freq
terms tend towards 1 and erfi towards i.

∞∫
0

e−Γ t′
(

cosh

(
1

2
∆Γ t′

)
± cos (∆mt′)

)
1√
2πσ

e
(t′−t)2

2σ2 dt′ =

e−Γt e
1
2
Γ2σ2

[
e

1
8
σ2(∆Γ)2 cosh

(
1

2
∆Γ

(
t− σ2Γ

))
± e−

1
2
∆m2σ2
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(
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(
t− Γσ2

))]
(97)
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