865 research outputs found
Studies on processing, particle formation, and immunogenicity of the HIV-1 gag gene product: a possible component of a HIV vaccine
Antigens in a particulate conformation were shown to be highly immunogenic in mammals. For this reason, the particle forming capacity of derivatives of the HIV-1 group specific core antigen p55 gag was assayed and compared dependent on various expression systems: recombinant bacteria, vaccinia- and baculoviruses were established encoding the entire core protein p55 either in its authentic sequence or lacking the myristylation consensus signal. Moreover, p55 gag was expressed in combination with the protease (p55-PR) or with the entire polymerase (p55-pol), respectively. Budding of 100-160 nm p55 core particles, resembling immature HIV-virions, was observed in the eucaryotic expression systems only. In comparison to the vaccinia virus driven expression of p55 in mammalian cells, considerably higher yields of particulate core antigen were obtained by infection of Spodoptera frugiperda (Sf9) insect cells with the recombinant Autographa californica nuclear polyhedrosis (AcMNPV) baculovirus. Mutation of the NH2-terminal myristylation signal sequence prevented budding of the immature core particles. Expression of the HIV p55-PR gene construct by recombinant baculovirus resulted in complete processing of the p55 gag precursor molecule in this system. The introduction of an artificial frameshift near the natural frameshift site resulted in constitutive expression of the viral protease and complete processing of p55, both in Escherichia coli and in vaccinia virus infected cells. Interestingly, significant processing of p55 resembling that of HIV infected H9 cells could also be achieved in the vaccinia system by fusing the entire pol gene to the gag gene. Moreover, processing was not found to be dependent on amino-terminal myristylation of the gag procursor molecule, which is in contrast to observations with type C and type D retrovirus. However, complete processing of p55 into p24, p17, p9 and p6 abolished particle formation. Purified immature HIV-virus like particles were highly immunogenic in rabbits, leading to a strong humoral immune response after immunization. Empty immature p55 gag particles represent a noninfectious and attractive candidate for a basic vaccine component
How the interface type manipulates the thermomechanical response of nanostructured metals : A case study on nickel
The presence of interfaces with nanoscale spacing significantly enhances the strength of materials, but also the rate controlling processes of plastic flow are subject to change. Due to the confined grain volumes, intragranular dislocation-dislocation interactions, the predominant processes at the micrometer scale, are replaced by emission of dislocations from and their subsequent accommodation at the interfaces. Both processes not only depend on the interfacial spacing, but also on the atomistic structure of the interface. Hence, a thorough understanding how these processes are affected by the interface structure is required to predict and improve the behavior of nanomaterials. The present study attempts to rationalize this effect by investigating the thermomechanical behavior of samples consisting of three different interfaces. Pure nickel samples with predominant fractions of low- and high-angle as well as twin boundaries with a similar average spacing around 150 nm are investigated using high temperature nanoindentation strain rate jump tests. Depending on the interface structure, hardness, strain rate sensitivity and apparent activation volumes evolve distinctively different with testing temperature. While in case of high-angle boundaries for all quantities a pronounced thermal dependence is found, the other two interface types behave almost athermal in the same temperature range. These differences can be rationalized based on the different interfacial diffusivity, affecting the predominant process of interfacial stress relaxation
Photon emission by an ultra-relativistic particle channeling in a periodically bent crystal
This paper is devoted to a detailed analysis of the new type of the undulator
radiation generated by an ultra-relativistic charged particle channeling along
a crystal plane, which is periodically bent by a transverse acoustic wave, as
well as to the conditions limiting the observation of this phenomenon. This
mechanism makes feasible the generation of electromagnetic radiation, both
spontaneous and stimulated, emitted in a wide range of the photon energies,
from X- up to gamma-rays
White dwarf spins from low mass stellar evolution models
The prediction of the spins of the compact remnants is a fundamental goal of
the theory of stellar evolution. Here, we confront the predictions for white
dwarf spins from evolutionary models including rotation with observational
constraints. We perform stellar evolution calculations for stars in the mass
range 1... 3\mso, including the physics of rotation, from the zero age main
sequence into the TP-AGB stage. We calculate two sets of model sequences, with
and without inclusion of magnetic fields. From the final computed models of
each sequence, we deduce the angular momenta and rotational velocities of the
emerging white dwarfs. While models including magnetic torques predict white
dwarf rotational velocities between 2 and 10 km s, those from the
non-magnetic sequences are found to be one to two orders of magnitude larger,
well above empirical upper limits. We find the situation analogous to that in
the neutron star progenitor mass range, and conclude that magnetic torques may
be required in order to understand the slow rotation of compact stellar
remnants in general.Comment: Accepted for A&A Letter
Gravitation, electromagnetism and cosmological constant in purely affine gravity
The Ferraris-Kijowski purely affine Lagrangian for the electromagnetic field,
that has the form of the Maxwell Lagrangian with the metric tensor replaced by
the symmetrized Ricci tensor, is dynamically equivalent to the metric
Einstein-Maxwell Lagrangian, except the zero-field limit, for which the metric
tensor is not well-defined. This feature indicates that, for the
Ferraris-Kijowski model to be physical, there must exist a background field
that depends on the Ricci tensor. The simplest possibility, supported by recent
astronomical observations, is the cosmological constant, generated in the
purely affine formulation of gravity by the Eddington Lagrangian. In this paper
we combine the electromagnetic field and the cosmological constant in the
purely affine formulation. We show that the sum of the two affine (Eddington
and Ferraris-Kijowski) Lagrangians is dynamically inequivalent to the sum of
the analogous (CDM and Einstein-Maxwell) Lagrangians in the
metric-affine/metric formulation. We also show that such a construction is
valid, like the affine Einstein-Born-Infeld formulation, only for weak
electromagnetic fields, on the order of the magnetic field in outer space of
the Solar System. Therefore the purely affine formulation that combines
gravity, electromagnetism and cosmological constant cannot be a simple sum of
affine terms corresponding separately to these fields. A quite complicated form
of the affine equivalent of the metric Einstein-Maxwell- Lagrangian
suggests that Nature can be described by a simpler affine Lagrangian, leading
to modifications of the Einstein-Maxwell-CDM theory for
electromagnetic fields that contribute to the spacetime curvature on the same
order as the cosmological constant.Comment: 17 pages, extended and combined with gr-qc/0612193; published versio
- …