43 research outputs found

    Early stage decomposition of solid polymer electrolytes in Li metal batteries

    Get PDF
    Development of functional and stable solid polymer electrolytes SPEs for battery applications is an important step towards both safer batteries and for the realization of lithium based or anode less batteries. The interface between the lithium and the solid polymer electrolyte is one of the bottlenecks, where severe degradation is expected. Here, the stability of three different SPEs poly ethylene oxide PEO , poly amp; 949; caprolactone PCL and poly trimethylene carbonate PTMC together with lithium bis trifluoromethanesulfonyl imide LiTFSI salt, is investigated after they have been exposed to lithium metal under UHV conditions. Degradation compounds, e.g. Li O R, LiF and LixSyOz, are identified for all SPEs using soft X ray photoelectron spectroscopy. A competing degradation between polymer and salt is identified in the outermost surface region lt;7 nm , and is dependent on the polymer host. PTMC LiTFSI shows the most severe decomposition of both polymer and salt followed by PCL LiTFSI and PEO LiTFSI. In addition, the movement of lithium species through the decomposed interface shows large variation depending on the polymer electrolyte syste

    CHAMPION: Chalmers Hierarchical Atomic, Molecular, Polymeric & Ionic Analysis Toolkit

    Get PDF
    We present CHAMPION: a software developed to automatically detect time-dependent bonds between atoms based on their dynamics, classify the local graph topology around them, and analyze the physicochemical properties of these topologies by statistical physics. In stark contrast to methodologies where bonds are detected based on static conditions such as cut-off distances, CHAMPION considers pairs of atoms to be bound only if they move together and act as a bound pair over time. Furthermore, the time-dependent global bond graph is possible to split into dynamically shifting connected components or subgraphs around a certain chemical motif and thereby allow the physicochemical properties of each such topology to be analyzed by statistical physics. Applicable to condensed matter and liquids in general, and electrolytes in particular, this allows both quantitative and qualitative descriptions of local structure, as well as dynamical processes such as speciation and diffusion. We present here a detailed overview of CHAMPION, including its underlying methodology, implementation and capabilities.Comment: 11 pages, 8 figure

    Decomposition of Carbonate-Based Electrolytes : Differences and Peculiarities for Liquids vs. Polymers Observed Using Operando Gas Analysis

    No full text
    Direct tracking of solid polymer electrolyte (SPE) decomposition in comparison to a liquid analogue was accomplished by monitoring the evolution of volatile species using online electrochemical mass spectrometry (OEMS). Reduction of a poly(trimethylene carbonate)-based SPE was dominated by CO2 formation. Detection of CO2 and an absence of CO confirms a preferred reduction degradation pathway involving C−O bond cleavage at the carbonyl carbon, in correlation with earlier suggestions. In contrast, the alkyl carbonate-based liquid electrolyte exhibited extensive ethylene formation. Trace quantities of H2 evolution ascribed to water impurities were also observed in both systems. During oxidation, the SPE and liquid electrolyte exhibited CO2, CO and SO2 evolution synonymous with electrolyte solvent and salt degradation, albeit at different potentials. Overall, gas evolution rates and redox currents were lower in the SPE system. OEMS revealed significant gas formation independent of current response, as such highlighting the limitations of the voltammetry technique commonly used today to assess electrochemical stability.De tvĂ„ första författarna delar förstaförfattarskapet</p

    Elimination of Fluorination : The Influence of Fluorine-Free Electrolytes on the Performance of LiNi1/3Mn1/3Co1/3O2/Silicon-Graphite Li-Ion Battery Cells

    No full text
    In the quest for environmentally friendly and safe batteries, moving from fluorinated electrolytes that are toxic and release corrosive compounds, such as HF, is a necessary step. Here, the effects of electrolyte fluorination are investigated for full cells combining silicon- graphite composite electrodes with Li-Ni1/3Mn1/3Co1/3O2 (NMC111) cathodes, a viable cell chemistry for a range of potential battery applications, by means of electrochemical testing and postmortem surface analysis. A fluorine-free electrolyte based on lithium bis(oxalato) borate (LiBOB) and vinylene carbonate (VC) is able to provide higher discharge capacity (147 mAh g(NMC)(-1)) and longer cycle life at C/10 (84.4% capacity retention after 200 cycles) than a cell with a highly fluorinated electrolyte containing LiPF6, fluoroethylene carbonate (FEC) and VC. The cell with the fluorine-free electrolyte is able to form a stable solid electrolyte interphase (SEI) layer, has low overpotential, and shows a slow increase in cell resistance that leads to improved electrochemical performance. Although the power capability is limiting the performance of the fluorine-free electrolyte due to higher interfacial resistance, it is still able to provide long cycle life at C/2 and outperforms the highly fluorinated electrolyte at 40 degrees C. X-ray photoelectron spectroscopy (XPS) results showed a F-rich SEI with the highly fluorinated electrolyte, while the fluorine-free electrolyte formed an O-rich SEI. Although their composition is different, the electrochemical results show that both the highly fluorinated and fluorine-free electrolytes are able to stabilize the silicon-based anode and support stable cycling in full cells. While these results demonstrate the possibility to use a nonfluorinated electrolyte in high-energy-density full cells, they also address new challenges toward environmentally friendly and nontoxic electrolytes

    A Mechanical Robust yet highly Conductive Diblock Copolymer-based Solid Polymer Electrolyte for Room Temperature Structural Battery Applications

    No full text
    In this paper we present a solid polymer electrolyte (SPE) that uniquely combines ionic conductivity and mechanical robustness. This is achieved with a diblock copolymer poly(benzyl methacrylate)-poly(Δ-caprolactone-r-trimethylene carbonate). The SPE with 16.7 wt% lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) showed the highest ionic conductivity (9.1×10−6 S cm−1 at 30 °C) and apparent transference number (T+) of 0.64 ± 0.04. Due to the employment of the benzyl methacrylate hard-block, this SPE is mechanically robust with a storage modulus (E') of 0.2 GPa below 40 °C, similar to polystyrene, thus making it a suitable material also for load-bearing constructions. The cell Li|SPE|LiFePO4 is able to cycle reliably at 30 °C for over 300 cycles. The promising mechanical properties, desired for compatibility with Li-metal, together with the fact that BCT is a highly reliable electrolyte material makes this SPE an excellent candidate for next-generation all-solid-state batteries

    Efficiency Roll-Off in Light-Emitting Electrochemical Cells

    No full text
    Understanding “efficiency roll-off” (i.e., the drop in emission efficiency with increasing current) is critical if efficient and bright emissive technologies are to be rationally designed. Emerging light-emitting electrochemical cells (LECs) can be cost- and energy-efficiently fabricated by ambient-air printing by virtue of the in situ formation of a p-n junction doping structure. However, this in situ doping transformation renders a meaningful efficiency analysis challenging. Herein, a method for separation and quantification of major LEC loss factors, notably the outcoupling efficiency and exciton quenching, is presented. Specifically, the position of the emissive p-n junction in common singlet-exciton emitting LECs is measured to shift markedly with increasing current, and the influence of this shift on the outcoupling efficiency is quantified. It is further verified that the LEC-characteristic high electrochemical-doping concentration renders singlet-polaron quenching (SPQ) significant already at low drive current density, but also that SPQ increases super-linearly with increasing current, because of increasing polaron density in the p-n junction region. This results in that SPQ dominates singlet-singlet quenching for relevant current densities, and significantly contributes to the efficiency roll-off. This method for deciphering the LEC efficiency roll-off can contribute to a rational realization of all-printed LEC devices that are efficient at highluminance.The authors wish to acknowledge generous financial support from the Swedish Research Council (2019‐02345 and 2021‐04778), the Swedish Energy Agency (50779‐1 and P2021‐00032), “Bertil och Britt Svenssons stiftelse för belysningsteknik,” Kempe Foundations, the Knut and Alice Wallenberg Foundation for a Proof of concept grant (KAW 2022.0381), the Wallenberg Initiative Materials Science for Sustainability (WISE) funded by the Knut and Alice Wallenberg Foundation (WISE‐AP01‐D02), and the European Research Council for an ERC Advanced Grant (project 101096650).</p

    Early-Stage Decomposition of Solid Polymer Electrolytes in Li-Metal Batteries

    Get PDF
    Development of functional and stable solid polymer electrolytes SPEs for battery applications is an important step towards both safer batteries and for the realization of lithium based or anode less batteries. The interface between the lithium and the solid polymer electrolyte is one of the bottlenecks, where severe degradation is expected. Here, the stability of three different SPEs poly ethylene oxide PEO , poly amp; 949; caprolactone PCL and poly trimethylene carbonate PTMC together with lithium bis trifluoromethanesulfonyl imide LiTFSI salt, is investigated after they have been exposed to lithium metal under UHV conditions. Degradation compounds, e.g. Li O R, LiF and LixSyOz, are identified for all SPEs using soft X ray photoelectron spectroscopy. A competing degradation between polymer and salt is identified in the outermost surface region lt;7 nm , and is dependent on the polymer host. PTMC LiTFSI shows the most severe decomposition of both polymer and salt followed by PCL LiTFSI and PEO LiTFSI. In addition, the movement of lithium species through the decomposed interface shows large variation depending on the polymer electrolyte syste

    Understanding the Capacity Fade in Polyacrylonitrile Binder-based LiNi0.5Mn1.5O4 Cells

    No full text
    Abstract Binders are electrochemically inactive components that have a crucial impact in battery ageing although being present in only small amounts, typically 1?3?% w/w in commercial products. The electrochemical performance of a battery can be tailored via these inactive materials by optimizing the electrode integrity and surface chemistry. Polyacrylonitrile (PAN) for LiNi0.5Mn1.5O4 (LNMO) half-cells is here investigated as a binder material to enable a stable electrode-electrolyte interface. Despite being previously described in literature as an oxidatively stable polymer, it is shown that PAN degrades and develops resistive layers within the LNMO cathode. We demonstrate continuous internal resistance increase in LNMO-based cells during battery operation using intermittent current interruption (ICI) technique. Through a combination of on-line electrochemical mass spectrometry (OEMS) and X-ray photoelectron spectroscopy (XPS) characterization techniques, the degradation products can be identified as solid on the LNMO electrode surface, and no excessive gas formation seen. The increased resistance and parasitic processes are correlated to side-reactions of the PAN, possibly intramolecular cyclization, which can be identified as the main cause of the comparatively fast capacity fade

    Ion transport in polycarbonate based solid polymer electrolytes: experimental and computational investigations

    No full text
    Among the alternative host materials for solid polymer electrolytes (SPEs), polycarbonates have recently shown promising functionality in all-solid-state lithium batteries from ambient to elevated temperatures. While the computational and experimental investigations of ion conduction in conventional polyethers have been extensive, the ion transport in polycarbonates has been much less studied. The present work investigates the ionic transport behavior in SPEs based on poly(trimethylene carbonate) (PTMC) and its co-polymer with epsilon-caprolactone (CL) via both experimental and computational approaches. FTIR spectra indicated a preferential local coordination between Li+ and ester carbonyl oxygen atoms in the P(TMC20CL80) co-polymer SPE. Diffusion NMR revealed that the co-polymer SPE also displays higher ion mobilities than PTMC. For both systems, locally oriented polymer domains, a few hundred nanometers in size and with limited connections between them, were inferred from the NMR spin relaxation and diffusion data. Potentiostatic polarization experiments revealed notably higher cationic transference numbers in the polycarbonate based SPEs as compared to conventional polyether based SPEs. In addition, MD simulations provided atomic-scale insight into the structure-dynamics properties, including confirmation of a preferential Li+-carbonyl oxygen atom coordination, with a preference in coordination to the ester based monomers. A coupling of the Li-ion dynamics to the polymer chain dynamics was indicated by both simulations and experiments
    corecore