101 research outputs found

    Networks of Recurrent Events, a Theory of Records, and an Application to Finding Causal Signatures in Seismicity

    Get PDF
    We propose a method to search for signs of causal structure in spatiotemporal data making minimal a priori assumptions about the underlying dynamics. To this end, we generalize the elementary concept of recurrence for a point process in time to recurrent events in space and time. An event is defined to be a recurrence of any previous event if it is closer to it in space than all the intervening events. As such, each sequence of recurrences for a given event is a record breaking process. This definition provides a strictly data driven technique to search for structure. Defining events to be nodes, and linking each event to its recurrences, generates a network of recurrent events. Significant deviations in properties of that network compared to networks arising from random processes allows one to infer attributes of the causal dynamics that generate observable correlations in the patterns. We derive analytically a number of properties for the network of recurrent events composed by a random process. We extend the theory of records to treat not only the variable where records happen, but also time as continuous. In this way, we construct a fully symmetric theory of records leading to a number of new results. Those analytic results are compared to the properties of a network synthesized from earthquakes in Southern California. Significant disparities from the ensemble of acausal networks that can be plausibly attributed to the causal structure of seismicity are: (1) Invariance of network statistics with the time span of the events considered, (2) Appearance of a fundamental length scale for recurrences, independent of the time span of the catalog, which is consistent with observations of the ``rupture length'', (3) Hierarchy in the distances and times of subsequent recurrences.Comment: 19 pages, 13 figure

    Spatial and temporal evolution of stress and slip rate during the 2000 Tokai slow earthquake

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): B03409, doi:10.1029/2004JB003426.We investigate an ongoing silent thrust event in the Tokai seismic gap along the Suruga-Nankai Trough, central Japan. Prior to the event, continuous GPS data from April 1996 to the end of 1999 show that this region displaced ∼2 cm/yr to the northwest relative to the landward plate. The GPS time series show an abrupt change in rate in mid-June 2000 that continues as of mid-2005. We model this transient deformation, which we refer to as the Tokai slow thrust slip event, as caused by slip on the interface between the Philippine Sea and Amurian plates. The spatial and temporal distribution of slip rate is estimated with Kalman filter based inversion methods. Our inversions reveal two slow subevents. The first initiated in late June 2000 slightly before the Miyake-jima eruption. The locus of slip then propagated southeast in the second half of 2000, with maximum slip rates of about 15 cm/yr through 2001. A second locus of slip initiated to the northeast in early 2001. The depth of the slip zone is about 25 km, which may correspond to the transition zone from a seismogenic to a freely sliding zone. The cumulative moment magnitude of the slow slip event up to November 2002 is M w ∼ 6.8. We calculate shear stress changes on the plate interface from the slip histories. Stress change as a function of slip rate shows trajectories similar to that inferred for high-speed ruptures; however, the maximum velocity is 8 orders of magnitude less than in normal earthquakes.Part of this study is supported by JSPS Postdoctral Fellowships for Research Abroad

    Discovery of naked charm particles and lifetime differences among charm species using nuclear emulsion techniques innovated in Japan

    Get PDF
    This is a historical review of the discovery of naked charm particles and lifetime differences among charm species. These discoveries in the field of cosmic-ray physics were made by the innovation of nuclear emulsion techniques in Japan. A pair of naked charm particles was discovered in 1971 in a cosmic-ray interaction, three years prior to the discovery of the hidden charm particle, J/Ψ, in western countries. Lifetime differences between charged and neutral charm particles were pointed out in 1975, which were later re-confirmed by the collaborative Experiment E531 at Fermilab. Japanese physicists led by K.Niu made essential contributions to it with improved emulsion techniques, complemented by electronic detectors. This review also discusses the discovery of artificially produced naked charm particles by us in an accelerator experiment at Fermilab in 1975 and of multiple-pair productions of charm particles in a single interaction in 1987 by the collaborative Experiment WA75 at CERN
    • …
    corecore