14 research outputs found

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    Tracking Subtle Stereotypes of Children with Trisomy 21: From Facial-Feature-Based to Implicit Stereotyping

    Get PDF
    Background: Stigmatization is one of the greatest obstacles to the successful integration of people with Trisomy 21 (T21 or Down syndrome), the most frequent genetic disorder associated with intellectual disability. Research on attitudes and stereotypes toward these people still focuses on explicit measures subjected to social-desirability biases, and neglects how variability in facial stigmata influences attitudes and stereotyping. Methodology/Principal Findings: The participants were 165 adults including 55 young adult students, 55 non-student adults, and 55 professional caregivers working with intellectually disabled persons. They were faced with implicit association tests (IAT), a well-known technique whereby response latency is used to capture the relative strength with which some groups of people—here photographed faces of typically developing children and children with T21—are automatically (without conscious awareness) associated with positive versus negative attributes in memory. Each participant also rated the same photographed faces (consciously accessible evaluations). We provide the first evidence that the positive bias typically found in explicit judgments of children with T21 is smaller for those whose facial features are highly characteristic of this disorder, compared to their counterparts with less distinctive features and to typically developing children. We also show that this bias can coexist with negative evaluations at the implicit level (with large effect sizes), even among professional caregivers

    Responses to ultraviolet-B radiation (280-315 nm) of pea (Pisum sativum) lines differing in leaf surface wax

    No full text
    To test the hypothesis that leaf surface wax influences plant responses to UV-B, 6 lines of cultivated pea (Pisum sativum L.), selected as having more or less wax, were grown at 0 or 6.5 kJ m(-2) day(-1) plant weighted UV-B against a background of 850-950 mu mol m(-2) s(-1) photosynthetically active radiation In the 4 lines with least leaf surface wax the amount of wax on adaxial and abaxial leaf surfaces was increased following exposure to 6.5 kJ m(-2) day(-1) UV-B, but UV-B decreased surface wax in Scout, which had the greatest wax deposits. On the adaxial leaf surface, UV-B radiation caused a shift in wax composition from alcohols to esters and hydrocarbons and the ratio of short to long chain length alkyl ester homologues was increased. There was no evidence of a shortening in carbon chain length of hydrocarbons, primary alcohols or fatty acids due to UV-B and no significant correlation between wax amount and UV reflectance from leaves. UV-B induced significant increases in UV-absorbing compounds in the expanded leaves and buds of most lines. UV-B reduced the growth of all lines. Foliage area (leaves plus stipules) declined by 5-30%, plant dry weight by 12-30%, and plant height by 24-38%. Reductions in growth occurred in the absence of any changes in chlorophyll fluorescence or photosynthetic rate. UV-B also had no major effect on carbon allocation patterns. The effects of UV-B on growth appeared to be due to changes in tissue extension and expansion. Indeed, many of the responses to UV-B observed in this study of pea appear more consistent with indirect effects being expressed in developing tissues rather than through the direct action of UV-B on mature tissues. There was no evidence that wax amount or biochemistry was associated with the sensitivity of the lines to UV-B radiation. Furthermore, induction of pigments was not correlated with changes in growth. However, lines with the greatest constitutive amounts of pigments in unexpanded bud tissues were most tolerant of elevated UV-B
    corecore