59 research outputs found

    Appetite, gut hormone and energy intake responses to low volume sprint interval and traditional endurance exercise.

    Get PDF
    Sprint interval exercise improves several health markers but the appetite and energy balance response is unknown. This study compared the effects of sprint interval and endurance exercise on appetite, energy intake and gut hormone responses. Twelve healthy males [mean (SD): age 23 (3) years, body mass index 24.2 (2.9) kg m(-2), maximum oxygen uptake 46.3 (10.2) mL kg(-1) min(-1)] completed three 8 h trials [control (CON), endurance exercise (END), sprint interval exercise (SIE)] separated by 1 week. Trials commenced upon completion of a standardised breakfast. Sixty minutes of cycling at 68.1 (4.3) % of maximum oxygen uptake was performed from 1.75-2.75 h in END. Six 30-s Wingate tests were performed from 2.25-2.75 h in SIE. Appetite ratings, acylated ghrelin and peptide YY (PYY) concentrations were measured throughout each trial. Food intake was monitored from buffet meals at 3.5 and 7 h and an overnight food bag. Appetite (P 0.05). Therefore, relative energy intake (energy intake minus the net energy expenditure of exercise) was lower in END than that in CON (15.7 %; P = 0.006) and SIE (11.5 %; P = 0.082). An acute bout of endurance exercise resulted in lower appetite perceptions in the hours after exercise than sprint interval exercise and induced a greater 24 h energy deficit due to higher energy expenditure during exercise

    "I did not intend to stop. I just could not stand cigarettes any more." A qualitative interview study of smoking cessation among the elderly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Every year, more than 650,000 Europeans die because they smoke. Smoking is considered to be the single most preventable factor influencing health. General practitioners (GP) are encouraged to advise on smoking cessation at all suitable consultations. Unsolicited advice from GPs results in one of 40-60 smokers stopping smoking. Smoking cessation advice has traditionally been given on an individual basis. Our aim was to gain insights that may help general practitioners understand why people smoke, and why smokers stop and then remain quitting and, from this, to find fruitful approaches to the dialogue about stopping smoking.</p> <p>Methods</p> <p>Interviews with 18 elderly smokers and ex-smokers about their smoking and decisions to smoke or quit were analysed with qualitative content analysis across narratives. A narrative perspective was applied.</p> <p>Results</p> <p>Six stages in the smoking story emerged, from the start of smoking, where friends had a huge influence, until maintenance of the possible cessation. The informants were influenced by "all the others" at all stages. Spouses had vital influence in stopping, relapses and continued smoking. The majority of quitters had stopped by themselves without medication, and had kept the tobacco handy for 3-6 months. Often smoking cessation seemed to happen unplanned, though sometimes it was planned. With an increasingly negative social attitude towards smoking, the informants became more aware of the risks of smoking.</p> <p>Conclusion</p> <p>"All the others" is a clue in the smoking story. For smoking cessation, it is essential to be aware of the influence of friends and family members, especially a spouse. People may stop smoking unplanned, even when motivation is not obvious. Information from the community and from doctors on the negative aspects of smoking should continue. Eliciting life-long smoking narratives may open up for a fruitful dialogue, as well as prompting reflection about smoking and adding to the motivation to stop.</p

    Sprint training enhances ionic regulation during intense exercise in men

    No full text
    1. This study investigated the effects of 7 weeks of sprint training on changes in electrolyte concentrations and acid-base status in arterial and femoral venous blood, during and following maximal exercise for 30 s on an isokinetic cycle ergometer. 2. Six healthy males performed maximal exercise, before and after training. Blood samples were drawn simultaneously from brachial arterial and femoral venous catheters, at rest, during the final 10 s of exercise and during 10 min of recovery, and analysed for whole blood and plasma ions and acid-base variables. 3. Maximal exercise performance was enhanced after training, with a 13% increase in total work output and a 14% less decline in power output during maximal cycling. 4. The acute changes in plasma volume, ions and acid-base variables during maximal exercise were similar to previous observations. Sprint training did not influence the decline in plasma volume during or following maximal exercise. After training, maximal exercise was accompanied by lower arterial and femoral venous plasma [K+] and [Na+] across all measurement times (P < 0.05). Arterial plasma lactate concentration ([Lac-]) was greater (P < 0.05), but femoral venous plasma [Lac-] was unchanged by training. 5. Net release into, or uptake of ions from plasma passing through the exercising muscle was assessed by arteriovenous concentration differences, corrected for fluid movements. K+ release into plasma during exercise, and a small net K+ uptake from plasma 1 min post-exercise (P < 0.05), were unchanged by training. A net Na+ loss from plasma during exercise (P < 0.05) tended to be reduced after training (P < 0.06). Release of Lac- into plasma during and after exercise (P < 0.05) was unchanged by training. 6. Arterial and venous plasma strong ion difference ([SID]; [SID] = [Na+] + [K+] - [Lac-] - [Cl-]) were lower after training (mean differences) by 2.7 and 1.8 mmol l-1, respectively (P < 0.05). Arterial and femoral venous CO2 tensions and arterial plasma [HCO3-] were lower after training (mean differences) by 1.7 mmHg, 4.5 mmHg and 1.2 mmol l-1, respectively (P < 0.05), with arterial plasma [H+] being greater after training by 2.2 nmol l-1 (P < 0.05). 7. The acute changes in whole blood volume and ion concentrations during maximal exercise were similar to previous observations: Arterial and femoral whole blood [K+] and [Cl-] were increased, whilst [Na+] was lower, across all observation times after training (P < 0.05). 8. Net uptake or release of ions by exercising muscle was assessed by arteriovenous whole blood concentration differences, corrected for fluid movements. A net K+ uptake by muscle occurred at all times, including exercise, but this was not significantly different after training. An increased net Na+ uptake by muscle occurred during exercise (P < 0.05) with greater Na+ uptake after training (P < 0.05). Net muscle Lac- release and Cl- uptake occurred at all times (P < 0.05) and were unchanged by training. 9. Sprint training improved muscle ion regulation, associated with increased intense exercise performance, at the expense of a greater systemic acidosis. Increased muscle Na+ and K+ uptake by muscle during the final seconds of exercise after training are consistent with a greater activation of the muscle Na(+) - K+ pump, reduced cellular K+ loss and the observed lesser rate of fatigue. The greater plasma acidosis found after sprint training was caused by a lower arterial plasma [SID] due to lower plasma [K+] and [Na+], and higher plasma [Lac-]
    • …
    corecore