1,267 research outputs found

    Why Does Anyone Mediate if Mediation Risks Psychological Dissatisfaction, Extra Costs and Manipulation? Three Theories Reveal Paradoxes Resolved by Mediator Standards of Ethical Practice

    Get PDF
    Published in cooperation with the American Bar Association Section of Dispute Resolutio

    Parametric studies of advanced turboprops

    Get PDF
    The effects of geometric variables (sweep and twist) on the structural performance of advanced turboprops are investigated. The investigation is limited to aerodynamically efficient turboprops using an acceptable design configuration as a baseline. The baseline configuration is modified using a seven by seven array of independently varying sweep and twist parameters while maintaining acceptable aerodynamic efficiency. The turboprop structural performance is evaluated in terms of critical speeds, tip displacements, and vibration frequencies where geometric nonlinearities are included. The results obtained are presented in such a manner as to highlight the effects of sweep and twist on the structural performance of aerodynamically efficient turboprop configurations

    Generation of Total Angular Momentum Eigenstates in Remote Qubits

    Full text link
    We propose a scheme enabling the universal coupling of angular momentum of NN remote noninteracting qubits using linear optical tools only. Our system consists of NN single-photon emitters in a Λ\Lambda-configuration that are entangled among their long-lived ground-state qubits through suitably designed measurements of the emitted photons. In this manner, we present an experimentally feasible algorithm that is able to generate any of the 2N2^N symmetric and nonsymmetric total angular momentum eigenstates spanning the Hilbert space of the NN-qubit compound.Comment: 5 pages, 4 figures, improved presentation. Accepted in Physical Review

    A versatile source of polarization-entangled photons

    Full text link
    We propose a method for the generation of a large variety of entangled states, encoded in the polarization degrees of freedom of N photons, within the same experimental setup. Starting with uncorrelated photons, emitted from N arbitrary single photon sources, and using linear optical tools only, we demonstrate the creation of all symmetric states, e.g., GHZ- and W-states, as well as all symmetric and non-symmetric total angular momentum eigenstates of the N qubit compound.Comment: 4 pages, 3 figure

    Takagi-Taupin Description of X-ray Dynamical Diffraction from Diffractive Optics with Large Numerical Aperture

    Full text link
    We present a formalism of x-ray dynamical diffraction from volume diffractive optics with large numerical aperture and high aspect ratio, in an analogy to the Takagi-Taupin equations for strained single crystals. We derive a set of basic equations for dynamical diffraction from volume diffractive optics, which enable us to study the focusing property of these optics with various grating profiles. We study volume diffractive optics that satisfy the Bragg condition to various degrees, namely flat, tilted and wedged geometries, and derive the curved geometries required for ultimate focusing. We show that the curved geometries satisfy the Bragg condition everywhere and phase requirement for point focusing, and effectively focus hard x-rays to a scale close to the wavelength.Comment: 18 pages, 12 figure

    X-Ray Microscopy: Preparations for Studies of Frozen Hydrated Specimens

    Get PDF
    X-ray microscopes provide higher resolution than visible light microscopes. Wet, biological materials with a water thickness of up to about 10 μm can be imaged with good contrast using soft X-rays with wavelengths between the oxygen and carbon absorption edges (at 24 and 43 Å). The Stony Brook group has developed and operates a scanning transmission X-ray microscope (STXM) at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The microscope is used for imaging with a current resolution of 50 nm, and for elemental and chemical state mapping. Radiation damage imposes a significant limitation upon high resolution X-ray microscopy of room temperature wet specimens. Experience from electron microscopy suggests that cryo techniques allow vitrified specimens to be imaged repeatedly. This is due to the increased radiation stability of biological specimens in the frozen hydrated state. Better radiation stability has been shown recently with a cryo transmission X-ray microscope developed by the University of Gottingen, operating at the BESSY storage ring in Berlin, Germany. At Stony Brook, we are developing a cryo scanning transmission X-ray microscope (CryoSTXM) to carry out imaging and spectra-microscopy experiments on frozen hydrated specimens. This article will give an outlook onto the research projects that we plan to perform using the CryoSTXM

    Functional and immunological relationships between metyrapone reductase from mouse liver microsomes and 3α-hydroxysteroid dehydrogenase from Pseudomonas testosteroni

    Get PDF
    Abstract3α-Hydroxysteroid dehydrogenase (3α-HSD) from Pseudomonas testosteroni was shown to reduce the xenobiotic carbonyl compound metyrapone (MPON). Reversely, MPON reductase purified from mouse liver microsomes and previously characterized as aldehyde reductase, was competitively inhibited by 3α-HSD steroid substrates. For MPON reduction both enzymes can use either NADH or NADPH as co-substrate. Immunoblot analysis after native and SDS gel electrophoresis of 3α-HSD gave a specific crossreaction with the antibodies against the microsomal mouse liver MPON reductase pointing to structural homologies between these enzymes. In conclusion, there seem to exist structural as well as functional relationships between a mammalian liver aldehyde reductase and prokaryotic 3α-HSD. Moreover, based on the molecular weights and the co-substrate specificities microsomal mouse liver MPON reductase and Pseudomonas 3α-HSD seem to be members of the short-chain alcohol dehydrogenase family

    Nanoscale Charge Density and Dynamics in Graphene Oxide

    Get PDF
    Graphene oxide (GO) is widely used as a component in thin film optoelectronic device structures for practical reasons because its electronic and optical properties can be controlled. Progress critically depends on elucidating the nanoscale electronic structure of GO. However, direct experimental access is challenging because of its disordered and nonconductive character. Here, we quantitatively mapped the nanoscopic charge distribution and charge dynamics of an individual GO sheet by using Kelvin probe force microscopy (KPFM). Charge domains are identified, presenting important charge interactions below distances of 20 nm. Charge dynamics with very long relaxation times of at least several hours and a logarithmic decay of the time correlation function are in excellent agreement with Monte Carlo simulations, revealing an universal hopping transport mechanism best described by Efros-Shklovskii''s law. © 2021 The Authors. Published by American Chemical Society

    Carbon nanotube film electrodes with acrylic additives: Blocking electrochemical charge transfer reactions

    Get PDF
    Carbon nanotubes (CNTs) processed into conductive films by liquid phase deposition technologies reveal increasing interest as electrode components in electrochemical device platforms for sensing and energy storage applications. In this work we show that the addition of acrylic latex to water-based CNT inks not only favors the fabrication of stable and robust flexible electrodes on plastic substrates but, moreover, sensitively enables the control of their electrical and electrochemical transport properties. Importantly, within a given concentration range, the acrylic additive in the films, being used as working electrodes, effectively blocks undesired faradaic transfer reactions across the electrode–electrolyte interface while maintaining their capacitance response as probed in a three-electrode electrochemical device configuration. Our results suggest a valuable strategy to enhance the chemical stability of CNT film electrodes and to suppress non-specific parasitic electrochemical reactions of relevance to electroanalytical and energy storage applications
    corecore