19 research outputs found

    The HLA class II allele DRB1*1501 is over-represented in patients with idiopathic pulmonary fibrosis

    Get PDF
    Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and medically refractory lung disease with a grim prognosis. Although the etiology of IPF remains perplexing, abnormal adaptive immune responses are evident in many afflicted patients. We hypothesized that perturbations of human leukocyte antigen (HLA) allele frequencies, which are often seen among patients with immunologic diseases, may also be present in IPF patients. Methods/Principal Findings: HLA alleles were determined in subpopulations of IPF and normal subjects using molecular typing methods. HLA-DRB1*15 was over-represented in a discovery cohort of 79 Caucasian IPF subjects who had lung transplantations at the University of Pittsburgh (36.7%) compared to normal reference populations. These findings were prospectively replicated in a validation cohort of 196 additional IPF subjects from four other U.S. medical centers that included both ambulatory patients and lung transplantation recipients. High-resolution typing was used to further define specific HLA-DRB1*15 alleles. DRB1*1501 prevalence in IPF subjects was similar among the 143 ambulatory patients and 132 transplant recipients (31.5% and 34.8%, respectively, p = 0.55). The aggregate prevalence of DRB1*1501 in IPF patients was significantly greater than among 285 healthy controls (33.1% vs. 20.0%, respectively, OR 2.0; 95%CI 1.3-2.9, p = 0.0004). IPF patients with DRB1*1501 (n = 91) tended to have decreased diffusing capacities for carbon monoxide (DLCO) compared to the 184 disease subjects who lacked this allele (37.8±1.7% vs. 42.8±1.4%, p = 0.036). Conclusions/Significance: DRB1*1501 is more prevalent among IPF patients than normal subjects, and may be associated with greater impairment of gas exchange. These data are novel evidence that immunogenetic processes can play a role in the susceptibility to and/or manifestations of IPF. Findings here of a disease association at the HLA-DR locus have broad pathogenic implications, illustrate a specific chromosomal area for incremental, targeted genomic study, and may identify a distinct clinical phenotype among patients with this enigmatic, morbid lung disease

    Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy

    No full text
    International audienceThe organization of collagen during fibrotic processes is poorly characterized because of the lack of appropriate methodologies. Here we show that multimodal multiphoton microscopy provides novel insights into lung fibrosis. We characterize normal and fibrotic pulmonary tissue in the bleomycin model, and show that second-harmonic generation by fibrillar collagen reveals the micrometer-scale three-dimensional spatial distribution of the fibrosis. We find that combined two-photon excited fluorescence and second-harmonic imaging of unstained lung tissue allows separating the inflammatory and fibrotic steps in this pathology, underlining characteristic features of fibroblastic foci in human Idiopathic Pulmonary Fibrosis samples. Finally, we propose phenomenological scores of lung fibrosis and we show that they unambiguously sort out control and treated mice, with a better sensitivity and reproducibility in the subpleural region. These results should be readily generalized to other organs, as an accurate method to assess extracellular matrix remodeling during fibrosis. Microsc. Res. Tech., 2007. © 2006 Wiley-Liss, Inc

    Spatial distribution and quantitative analysis of extracellular matrix remodelling in lung fibrosis using multiphoton microscopy

    No full text
    International audienceThe micro- and macro- organization of collagen during fibrotic processes is usually characterized by 2D assessment using histochemical stains on selected slides such as Masson's Trichrome or Sirius Red. However, these staining methods are limited to semi quantitative evaluation on restricted surfaces. Quantitative evaluation of collagen contents, such as Hydroxyproline or Sircol assays, performed on lung homogenates requires large amounts of tissue, are time consuming and do not give the spatial distribution of collagen. Non linear multimodal, multiphoton microscopy provides novel insights into collagen deposition in tissues. In this study, the micrometerscale three-dimensional spatial distribution of fi brosis was characterized in normal mouse lung (n=5) and in the murine model of bleomycininduced lung fi brosis (n=5) by second harmonic generation (SHG) of fi brillar collagen, using C56Bl/6 mice at day 14 post intra-tracheal instillation of bleomycin, 80 µg in 50 µl of 0.9 % sterile saline

    Transcriptomic evidence of immune activation in macroscopically normal-appearing and scarred lung tissues in idiopathic pulmonary fibrosis

    No full text
    •Macroscopically normal tissue in IPF patients is profoundly involved in the disease.•Immune activation is overt in normal-appearing and scarred tissue in IPF lungs.•Differences between normal-appearing and scarred tissue involve mostly epithelium. Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease manifested by overtly scarred peripheral and basilar regions and more normal-appearing central lung areas. Lung tissues from macroscopically normal-appearing (IPFn) and scarred (IPFs) areas of explanted IPF lungs were analyzed by RNASeq and compared with healthy control (HC) lung tissues. There were profound transcriptomic changes in IPFn compared with HC tissues, which included elevated expression of numerous immune-, inflammation-, and extracellular matrix-related mRNAs, and these changes were similar to those observed with IPFs compared to HC. Comparing IPFn directly to IPFs, elevated expression of epithelial mucociliary mRNAs was observed in the IPFs tissues. Thus, despite the known geographic tissue heterogeneity in IPF, the entire lung is actively involved in the disease process, and demonstrates pronounced elevated expression of numerous immune-related genes. Differences between normal-appearing and scarred tissues may thus be driven by deranged epithelial homeostasis or possibly non-transcriptomic factors
    corecore