442 research outputs found

    Effect of Intraduodenal Bile and Na-Taurodeoxycholate on Exocrine Pancreatic Secretion and on Plasma Levels of Secretin, Pancreatic Polypeptide, and Gastrin in Man

    Get PDF
    The effect of intraduodenally administered cattle bile (CB) and Na-taurodeoxycholate (TDC) on basal pancreatic secretion and plasma levels of secretin, pancreatic polypeptide (PP), and gastrin were investigated on two separate days in 10 fasting volunteers. Doses of 2-6 g CB and 20&600 mg TDC were given intraduodenally at 65-min intervals. Volume, bicarbonate, lipase, trypsin, amylase, and bilirubin were measured in 10-min fractions of duodenal juice, and GI peptides determined by radioimmunoassay. CB and TDC enhanced significantly and dose-dependently volume, bicarbonate and enzyme secretion, and plasma secretin and PP levels. In contrast, plasma gastrin showed only a marginal increase. We conclude that the hydrokinetic effect of intraduodenal CB and TDC is at least partially mediated by secretin. Gastrin could be ruled out as a mediator of the ecbolic effect, whereas other GI peptides, primarily CCK, and/or neural mechanisms must be considered possible mediators. Both pathways may also play a role in the PP release

    The Role of Bile in the Regulation of Exocrine Pancreatic Secretion

    Get PDF
    As early as 1926 Mellanby (1) was able to show that introduction of bile into the duodenum of anesthetized cats produces a copious flow of pancreatic juice. In conscious dogs, Ivy & Lueth (2) reported, bile is only a weak stimulant of pancreatic secretion. Diversion of bile from the duodenum, however, did not influence pancreatic volume secretion stimulated by a meal (3,4). Moreover, Thomas & Crider (5) observed that bile not only failed to stimulate the secretion of pancreatic juice but also abolished the pancreatic response to intraduodenally administered peptone or soap

    Anatomical landmarks localization for capsule endoscopy studies

    Full text link
    Wireless Capsule Endoscopy is a medical procedure that uses a small, wireless camera to capture images of the inside of the digestive tract. The identification of the entrance and exit of the small bowel and of the large intestine is one of the first tasks that need to be accomplished to read a video. This paper addresses the design of a clinical decision support tool to detect these anatomical landmarks. We have developed a system based on deep learning that combines images, timestamps, and motion data to achieve state-of-the-art results. Our method does not only classify the images as being inside or outside the studied organs, but it is also able to identify the entrance and exit frames. The experiments performed with three different datasets (one public and two private) show that our system is able to approximate the landmarks while achieving high accuracy on the classification problem (inside/outside of the organ). When comparing the entrance and exit of the studied organs, the distance between predicted and real landmarks is reduced from 1.5 to 10 times with respect to previous state-of-the-art methods

    Anatomy of the ankle ligaments: a pictorial essay

    Get PDF
    Understanding the anatomy of the ankle ligaments is important for correct diagnosis and treatment. Ankle ligament injury is the most frequent cause of acute ankle pain. Chronic ankle pain often finds its cause in laxity of one of the ankle ligaments. In this pictorial essay, the ligaments around the ankle are grouped, depending on their anatomic orientation, and each of the ankle ligaments is discussed in detail

    RTP801 regulates motor cortex synaptic transmission and learning.

    Get PDF
    BACKGROUND: RTP801/REDD1 is a stress-regulated protein whose upregulation is necessary and sufficient to trigger neuronal death in in vitro and in vivo models of Parkinson's and Huntington's diseases and is up regulated in compromised neurons in human postmortem brains of both neurodegenerative disorders. Indeed, in both Parkinson's and Huntington's disease mouse models, RTP801 knockdown alleviates motor-learning deficits. RESULTS: We investigated the physiological role of RTP801 in neuronal plasticity and we found RTP801 in rat, mouse and human synapses. The absence of RTP801 enhanced excitatory synaptic transmission in both neuronal cultures and brain slices from RTP801 knock-out (KO) mice. Indeed, RTP801 KO mice showed improved motor learning, which correlated with lower spine density but increased basal filopodia and mushroom spines in the motor cortex layer V. This paralleled with higher levels of synaptosomal GluA1 and TrkB receptors in homogenates derived from KO mice motor cortex, proteins that are associated with synaptic strengthening. CONCLUSIONS: Altogether, these results indicate that RTP801 has an important role modulating neuronal plasticity and motor learning. They will help to understand its role in neurodegenerative disorders where RTP801 levels are detrimentally upregulated

    Preserved VPS13A distribution and expression in Huntington’s disease: divergent mechanisms of action for similar movement disorders?

    Get PDF
    VPS13A disease and Huntington’s disease (HD) are two basal ganglia disorders that may be difficult to distinguish clinically because they have similar symptoms, neuropathological features, and cellular dysfunctions with selective degeneration of the medium spiny neurons of the striatum. However, their etiology is different. VPS13A disease is caused by a mutation in the VPS13A gene leading to a lack of protein in the cells, while HD is due to an expansion of CAG repeat in the huntingtin (Htt) gene, leading to aberrant accumulation of mutant Htt. Considering the similarities of both diseases regarding the selective degeneration of striatal medium spiny neurons, the involvement of VPS13A in the molecular mechanisms of HD pathophysiology cannot be discarded. We analyzed the VPS13A distribution in the striatum, cortex, hippocampus, and cerebellum of a transgenic mouse model of HD. We also quantified the VPS13A levels in the human cortex and putamen nucleus; and compared data on mutant Htt-induced changes in VPS13A expression from differential expression datasets. We found that VPS13A brain distribution or expression was unaltered in most situations with a decrease in the putamen of HD patients and small mRNA changes in the striatum and cerebellum of HD mice. We concluded that the selective susceptibility of the striatum in VPS13A disease and HD may be a consequence of disturbances in different cellular processes with convergent molecular mechanisms already to be elucidated

    Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12

    Get PDF
    Disturbance of calcium homeostasis and accumulation of misfolded proteins in the endoplasmic reticulum (ER) are considered contributory components of cell death after ischemia. However, the signal-transducing events that are activated by ER stress after cerebral ischemia are incompletely understood. In this study, we show that caspase-12 and the PERK and IRE pathways are activated following oxygen-glucose deprivation (OGD) of mixed cortical cultures or neonatal hypoxia–ischemia (HI). Activation of PERK led to a transient phosphorylation of eIF2α, an increase in ATF4 levels and the induction of gadd34 (a subunit of an eIF2α-directed phosphatase). Interestingly, the upregulation of ATF4 did not lead to an increase in the levels of CHOP. Additionally, IRE1 activation was mediated by the increase in the processed form of xbp1, which would be responsible for the observed expression of edem2 and the increased levels of the chaperones GRP78 and GRP94. We were also able to detect caspase-12 proteolysis after HI or OGD. Processing of procaspase-12 was mediated by NMDA receptor and calpain activation. Moreover, our data suggest that caspase-12 activation is independent of the unfolded protein response activated by ER stress

    The efficacy and safety of prokinetic agents in critically ill patients receiving enteral nutrition: a systematic review and meta-analysis of randomized trials.

    Get PDF
    BACKGROUND: Intolerance to enteral nutrition is common in critically ill adults, and may result in significant morbidity including ileus, abdominal distension, vomiting and potential aspiration events. Prokinetic agents are prescribed to improve gastric emptying. However, the efficacy and safety of these agents in critically ill patients is not well-defined. Therefore, we conducted a systematic review and meta-analysis to determine the efficacy and safety of prokinetic agents in critically ill patients. METHODS: We searched MEDLINE, EMBASE, and Cochrane Library from inception up to January 2016. Eligible studies included randomized controlled trials (RCTs) of critically ill adults assigned to receive a prokinetic agent or placebo, and that reported relevant clinical outcomes. Two independent reviewers screened potentially eligible articles, selected eligible studies, and abstracted pertinent data. We calculated pooled relative risk (RR) for dichotomous outcomes and mean difference for continuous outcomes, with the corresponding 95 % confidence interval (CI). We assessed risk of bias using Cochrane risk of bias tool, and the quality of evidence using grading of recommendations assessment, development, and evaluation (GRADE) methodology. RESULTS: Thirteen RCTs (enrolling 1341 patients) met our inclusion criteria. Prokinetic agents significantly reduced feeding intolerance (RR 0.73, 95 % CI 0.55, 0.97; P = 0.03; moderate certainty), which translated to 17.3 % (95 % CI 5, 26.8 %) absolute reduction in feeding intolerance. Prokinetics also reduced the risk of developing high gastric residual volumes (RR 0.69; 95 % CI 0.52, 0.91; P = 0.009; moderate quality) and increased the success of post-pyloric feeding tube placement (RR 1.60, 95 % CI 1.17, 2.21; P = 0.004; moderate quality). There was no significant improvement in the risk of vomiting, diarrhea, intensive care unit (ICU) length of stay or mortality. Prokinetic agents also did not significantly increase the rate of diarrhea. CONCLUSION: There is moderate-quality evidence that prokinetic agents reduce feeding intolerance in critically ill patients compared to placebo or no intervention. However, the impact on other clinical outcomes such as pneumonia, mortality, and ICU length of stay is unclear
    • …
    corecore