43 research outputs found
Recommended from our members
Sorption of cesium and strontium on Savannah River soils impregnated with colloidal silica
Colloidal silica (CS) is being considered as an injectable low viscosity fluid for creation of impermeable barrier containment of low level radioactive waste at the Savannah River Site (SRS), South Carolina. The sorption behavior of cesium and strontium on Savannah River Site Soils impregnated with Colloidal Silica was studied using a batch experimental method. The samples were prepared by addition of CS and an aqueous solution of CaCl{sub 2} to the soil materials. Sorption studies were conducted after the gelation of the CS samples had occurred. The variation of the sorption ratio, R, as a function of cesium or strontium concentration was examined. The Freundlich isotherm was used to fit the data and very good results were obtained
Intermolecular channels direct crystal orientation in mineralized collagen
The mineralized collagen fibril is the basic building block of bone, and is commonly pictured as a parallel array of ultrathin carbonated hydroxyapatite (HAp) platelets distributed throughout the collagen. This orientation is often attributed to an epitaxial relationship between the HAp and collagen molecules inside 2D voids within the fibril. Although recent studies have questioned this model, the structural relationship between the collagen matrix and HAp, and the mechanisms by which collagen directs mineralization remain unclear. Here, we use XRD to reveal that the voids in the collagen are in fact cylindrical pores with diameters of ~2 nm, while electron microscopy shows that the HAp crystals in bone are only uniaxially oriented with respect to the collagen. From in vitro mineralization studies with HAp, CaCO3 and γ-FeOOH we conclude that confinement within these pores, together with the anisotropic growth of HAp, dictates the orientation of HAp crystals within the collagen fibril