1,112 research outputs found
Time-accurate simulations of a shear layer forced at a single frequency
Calculations are presented for the forced shear layer studied experimentally by Oster and Wygnanski, and Weisbrot. Two different computational approaches are examined: Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES). The DNS approach solves the full three dimensional Navier-Stokes equations for a temporally evolving mixing layer, while the LES approach solves the two dimensional Navier-Stokes equations with a subgrid scale turbulence model. While the comparison between these calculations and experimental data was hampered by a lack of information on the inflow boundary conditions, the calculations are shown to qualitatively agree with several aspects of the experiment. The sensitivity of these calculations to factors such as mesh refinement and Reynolds number is illustrated
Mesh refinement in a two-dimensional large eddy simulation of a forced shear layer
A series of large eddy simulations are made of a forced shear layer and compared with experimental data. Several mesh densities were examined to separate the effect of numerical inaccuracy from modeling deficiencies. The turbulence model that was used to represent small scale, 3-D motions correctly predicted some gross features of the flow field, but appears to be structurally incorrect. The main effect of mesh refinement was to act as a filter on the scale of vortices that developed from the inflow boundary conditions
Millisecond accuracy video display using OpenGL under Linux
To measure people’s reaction times to the nearest millisecond, it is necessary to know exactly when
a stimulus is displayed. This article describes how to display stimuli with millisecond accuracy on a
normal CRT monitor, using a PC running Linux. A simple C program is presented to illustrate how this
may be done within X Windows using the OpenGL rendering system. A test of this system is reported
that demonstrates that stimuli may be consistently displayed with millisecond accuracy. An algorithm
is presented that allows the exact time of stimulus presentation to be deduced, even if there are relatively
large errors in measuring the display time
Comparison of Earthquake Source Models for the 2011 Tohoku Event Using Tsunami Simulations and Near‐Field Observations
Selection of the earthquake source used in tsunami models of the 2011 Tohoku event affects the simulated tsunami waveform across the near field. Different earthquake sources, based on inversions of seismic waveforms, tsunami waveforms, and Global Positioning System (GPS) data, give distinguishable patterns of simulated tsunami heights in many locations in Tohoku and at near‐field Deep‐ocean Assessment and Reporting of Tsunamis (DART) buoys. We compared 10 sources proposed by different research groups using the GeoClaw code to simulate the resulting tsunami. Several simulations accurately reproduced observations at simulation sites with high grid resolution. Many earthquake sources produced results within 20% difference from the observations between 38° and 39° N, including realistic inundation on the Sendai plain, reflecting a common reliance on large initial seafloor uplift around 38° N (±0.5°), 143.25° E (±0.75°). As might be expected, DART data was better reproduced by sources created by inversion techniques that incorporated DART data in the inversion. Most of the earthquake sources tested at sites with high grid resolution were unable to reproduce the magnitude of runup north of 39° N, indicating that an additional source of tsunamigenic energy, not present in most source models, is needed to explain these observations
Medipix3 Demonstration and understanding of near ideal detector performance for 60 & 80 keV electrons
In our article we report first quantitative measurements of imaging
performance for the current generation of hybrid pixel detector, Medipix3, as
direct electron detector. Utilising beam energies of 60 & 80 keV, measurements
of modulation transfer function (MTF) and detective quantum efficiency (DQE)
have revealed that, in single pixel mode (SPM), energy threshold values can be
chosen to maximize either the MTF or DQE, obtaining values near to, or even
exceeding, those for an ideal detector. We have demonstrated that the Medipix3
charge summing mode (CSM) can deliver simultaneous, near ideal values of both
MTF and DQE. To understand direct detection performance further we have
characterized the detector response to single electron events, building an
empirical model which can predict detector MTF and DQE performance based on
energy threshold. Exemplifying our findings we demonstrate the Medipix3 imaging
performance, recording a fully exposed electron diffraction pattern at 24-bit
depth and images in SPM and CSM modes. Taken together our findings highlight
that for transmission electron microscopy performed at low energies (energies
<100 keV) thick hybrid pixel detectors provide an advantageous and alternative
architecture for direct electron imagin
Illness representations, treatment beliefs and the relationship to self-care in heart failure
Purpose
The purpose of this study was to explore the beliefs people with heart failure hold about their illness and its treatment and to determine any relationships between these beliefs and self-care using the Common Sense Model (CSM) of illness cognitions and behaviour as the theoretical framework (Leventhal et al, 1980).
Methods
Using a mixed methodology (Creswell and Plano Clark, 2007), findings from patient interviews were used to adapt the Revised Illness Perception Questionnaire (IPQ-R) (Moss-Morris et al, 2002) and the Beliefs about Medicines Questionnaire (BMQ) (Horne et al, 1999) in order to make them illness-specific. A questionnaire assessing self-care was developed based on the European Heart Failure Self-care Behaviour Scale (EHFScBS) (Jaarsma et al, 2003), the interview findings and a nominal group technique with specialist heart failure nurses. These questionnaires were used to determine beliefs and the relationship to behaviour in a cross-sectional survey of 169 patients with heart failure.
Results
A number of statistically significant correlations were found between beliefs and self-care. Most notably, perceived medication knowledge (r = 0.51, p ≤ 0.01), beliefs about the necessity of medication (r = 0.45, p ≤ 0.01) and illness coherence (r = 0.39, p ≤ 0.01). Multiple regression analysis revealed that 46% of the variance in self-care could be explained by illness representations and treatment beliefs (Adj. R2 = 0.46, F = 9.93, p = 0.00). Three factors were significant predictors of self-care - medication knowledge (β = 0.319, p = 0.003), a belief in the illness having serious consequences (β = 0.258, p = 0.008) and the impact of medication use on lifestyle (β = -0.231, p = 0.03).
Discussion
The exploration of illness representations revealed a realistic picture of heart failure with a cluster of beliefs around a chronic illness with serious consequences and a high number of symptoms. There was a strong belief in the necessity of medication but for some, medication use had a negative impact on daily life. Patients were confident in their knowledge of medication but this was reduced when family members took control of medication management. A number of beliefs were predictive of self-care, suggesting that interventions designed to maximise these beliefs and correct any misconceptions may enhance self-care and potentially improve clinical outcomes in this population
Autonomous three-dimensional formation flight for a swarm of unmanned aerial vehicles
This paper investigates the development of a new guidance algorithm for a formation of unmanned aerial vehicles. Using the new approach of bifurcating potential fields, it is shown that a formation of unmanned aerial vehicles can be successfully controlled such that verifiable autonomous patterns are achieved, with a simple parameter switch allowing for transitions between patterns. The key contribution that this paper presents is in the development of a new bounded bifurcating potential field that avoids saturating the vehicle actuators, which is essential for real or safety-critical applications. To demonstrate this, a guidance and control method is developed, based on a six-degreeof-freedom linearized aircraft model, showing that, in simulation, three-dimensional formation flight for a swarm of unmanned aerial vehicles can be achieved
A PC parallel port button box provides millisecond response time accuracy under Linux
For psychologists, it is sometimes necessary to measure people's reaction times to the nearest millisecond. This article describes how to use the PC parallel port to receive signals from a button box to achieve millisecond response time accuracy. The workings of the parallel port, the corresponding port addresses, and a simple Linux program for controlling the port are described. A test of the speed and reliability of button box signal detection is reported. If the reader is moderately familiar with Linux, this article should provide sufficient instruction for him or her to build and test his or her own parallel port button box. This article also describes how the parallel port could be used to control an external apparatus
Finding apparent horizons and other two-surfaces of constant expansion
Apparent horizons are structures of spacelike hypersurfaces that can be
determined locally in time. Closed surfaces of constant expansion (CE surfaces)
are a generalisation of apparent horizons. I present an efficient method for
locating CE surfaces. This method uses an explicit representation of the
surface, allowing for arbitrary resolutions and, in principle, shapes. The CE
surface equation is then solved as a nonlinear elliptic equation.
It is reasonable to assume that CE surfaces foliate a spacelike hypersurface
outside of some interior region, thus defining an invariant (but still
slicing-dependent) radial coordinate. This can be used to determine gauge modes
and to compare time evolutions with different gauge conditions. CE surfaces
also provide an efficient way to find new apparent horizons as they appear e.g.
in binary black hole simulations.Comment: 21 pages, 8 figures; two references adde
- …
