590 research outputs found

    Aspects of emergent geometry in the AdS/CFT context

    Get PDF
    We study aspects of emergent geometry for the case of orbifold superconformal field theories in four dimensions, where the orbifolds are abelian within the AdS/CFT proposal. In particular, we show that the realization of emergent geometry starting from the N=4 SYM theory in terms of a gas of particles in the moduli space of vacua of a single D3 brane in flat space gets generalized to a gas of particles on the moduli space of the corresponding orbifold conformal field theory (a gas of D3 branes on the orbifold space). Our main purpose is to show that this can be analyzed using the same techniques as in the N=4 SYM case by using the method of images, including the measure effects associated to the volume of the gauge orbit of the configurations. This measure effect gives an effective repulsion between the particles that makes them condense into a non-trivial vacuum configuration, and it is exactly these configurations that lead to the geometry of X in the AdS x X dual field theoryComment: 24 page

    Variability in upwelling across the tropical tropopause and correlations with tracers in the lower stratosphere

    Get PDF
    Temporal variability of the upwelling near the tropical tropopause on daily to annual timescales is investigated using three different estimates computed from the ERA-Interim reanalysis. These include upwelling archived by the reanalysis, plus estimates derived from thermodynamic and momentum balance calculations. Substantial variability in upwelling is observed on both seasonal and sub-seasonal timescales, and the three estimates show reasonably good agreement. Tropical upwelling should exert strong influence on temperatures and on tracers with large vertical gradients in the lower stratosphere. We test this behavior by comparing the calculated upwelling estimates with observed temperatures in the tropical lower stratosphere, and with measurements of ozone and carbon monoxide (CO) from the Aura Microwave Limb Sounder (MLS) satellite instrument. Time series of temperature, ozone and CO are well correlated in the tropical lower stratosphere, and we quantify the influence of tropical upwelling on this joint variability. Strong coherent annual cycles observed in each quantity are found to reflect the seasonal cycle in upwelling. Statistically significant correlations between upwelling, temperatures and tracers are also found for sub-seasonal timescales, demonstrating the importance of upwelling in forcing transient variability in the lower tropical stratosphere

    Numerical tests of AdS/CFT at strong coupling

    Full text link
    We study various correlation functions (two and three point functions) in a large NN matrix model of six commuting matrices with a numerical Monte Carlo algorithm. This is equivalent to a model of a gas of particles in six dimensions with a confining quadratic potential and logarithmic repulsions at finite temperature, where we are measuring the leading order non-gaussianities in the thermal fluctuations. This is a simplified model of the low energy dynamics of N=4 SYM at strong coupling. We find strong evidence that the simplified matrix model matches with the dual gravitational description of three point functions in the AdS/CFT correspondence.Comment: 23 pages, 7 figures, revtex. v2: minor correction

    Trajectory model simulations of ozone (O<sub>3</sub>) and carbon monoxide (CO) in the lower stratosphere

    Get PDF
    A domain-filling, forward trajectory model originally developed for simulating stratospheric water vapor is used to simulate ozone (O3) and carbon monoxide (CO) in the lower stratosphere. Trajectories are initialized in the upper troposphere, and the circulation is based on reanalysis wind fields. In addition, chemical production and loss rates along trajectories are included using calculations from the Whole Atmosphere Community Climate Model (WACCM). The trajectory model results show good overall agreement with satellite observations from the Aura Microwave Limb Sounder (MLS) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) in terms of spatial structure and seasonal variability. The trajectory model results also agree well with the Eulerian WACCM simulations. Analysis of the simulated tracers shows that seasonal variations in tropical upwelling exerts strong influence on O3 and CO in the tropical lower stratosphere, and the coupled seasonal cycles provide a useful test of the transport simulations. Interannual variations in the tracers are also closely coupled to changes in upwelling, and the trajectory model can accurately capture and explain observed changes during 2005–2011. This demonstrates the importance of variability in tropical upwelling in forcing chemical changes in the tropical lower stratosphere

    What causes the irregular cycle of the atmospheric tape recorder signal in HCN?

    Get PDF
    Variations in the mixing ratio of long-lived trace gases entering the stratosphere in the tropics are carried upward with the rising air with the signal being observable throughout the tropical lower stratosphere. This phenomenon, referred to as "atmospheric tape recorder" has previously been observed for water vapor, CO2, and CO which exhibit an annual cycle. Recently, based on Microwave Limb Sounder (MLS) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) satellite measurements, the tape recorder signal has been observed for hydrogen cyanide (HCN) but with an approximately two-year period. Here we report on a model simulation of the HCN tape recorder for the time period 2002-2008 using the Chemical Lagrangian Model of the Stratosphere (CLaMS). The model can reproduce the observed pattern of the HCN tape recorder signal if time-resolved emissions from fires in Indonesia are used as lower boundary condition. This finding indicates that inter-annual variations in biomass burning in Indonesia, which are strongly influenced by El Nino events, control the HCN tape recorder signal. A longer time series of tropical HCN data will probably exhibit an irregular cycle rather than a regular biannual cycle. Citation: Pommrich, R., R. Muller, J.-U. Grooss, G. Gunther, P. Konopka, M. Riese, A. Heil, M. Schultz, H.-C. Pumphrey, and K. A. Walker (2010), What causes the irregular cycle of the atmospheric tape recorder signal in HCN?, Geophys. Res. Lett., 37, L16805, doi:10.1029/2010GL044056

    Characteristics of Hunter Harvested Montezuma Quail Wings and Implications for Molt Phenology

    Get PDF
    We obtained 1,899 hunter-harvested Montezuma quail (Cyrtonyx montezumae) wings from southeastern Arizona, USA, from the 2008–2009 hunting season. We determined age and sex based on plumage characteristics for 98.2% (1,864) of the original sample. One-way analysis of variance (ANOVA) of wing-chord length found differences (P \u3c 0.001) based on sex, but not age, with mean (± standard error) male wing chord (113.76 ± 0.15 mm) longer than mean female wing chord (111.03 ± 0.13 mm). Mean male and female wing-chord lengths from our study population were 6.8% and 7.7% shorter, respectively, than previously reported in the literature. We additionally calculated a complete prebasic molt cycle of 177 days based on previously reported preformative molt patterns. The primary benefits of our results are: 1) a more accurate sex-based wing-chord length based on a large sample size, 2) a method to back-calculate molt onset dates for hunter harvested after hatch year Montezuma quail, and 3) a potential means to model the influence of precipitation on population dynamics of Montezuma quail

    Delayed Decision-making in Real-time Beatbox Percussion Classification

    Get PDF
    This is an electronic version of an article published in Journal of New Music Research, 39(3), 203-213, 2010. doi:10.1080/09298215.2010.512979. Journal of New Music Research is available online at: www.tandfonline.com/openurl?genre=article&issn=1744-5027&volume=39&issue=3&spage=20

    Dragging a polymer chain into a nanotube and subsequent release

    Full text link
    We present a scaling theory and Monte Carlo (MC) simulation results for a flexible polymer chain slowly dragged by one end into a nanotube. We also describe the situation when the completely confined chain is released and gradually leaves the tube. MC simulations were performed for a self-avoiding lattice model with a biased chain growth algorithm, the pruned-enriched Rosenbluth method. The nanotube is a long channel opened at one end and its diameter DD is much smaller than the size of the polymer coil in solution. We analyze the following characteristics as functions of the chain end position xx inside the tube: the free energy of confinement, the average end-to-end distance, the average number of imprisoned monomers, and the average stretching of the confined part of the chain for various values of DD and for the number of monomers in the chain, NN. We show that when the chain end is dragged by a certain critical distance x∗x^* into the tube, the polymer undergoes a first-order phase transition whereby the remaining free tail is abruptly sucked into the tube. This is accompanied by jumps in the average size, the number of imprisoned segments, and in the average stretching parameter. The critical distance scales as x∗∌ND1−1/Îœx^*\sim ND^{1-1/\nu}. The transition takes place when approximately 3/4 of the chain units are dragged into the tube. The theory presented is based on constructing the Landau free energy as a function of an order parameter that provides a complete description of equilibrium and metastable states. We argue that if the trapped chain is released with all monomers allowed to fluctuate, the reverse process in which the chain leaves the confinement occurs smoothly without any jumps. Finally, we apply the theory to estimate the lifetime of confined DNA in metastable states in nanotubes.Comment: 13pages, 14figure
    • 

    corecore