590 research outputs found
Aspects of emergent geometry in the AdS/CFT context
We study aspects of emergent geometry for the case of orbifold superconformal
field theories in four dimensions, where the orbifolds are abelian within the
AdS/CFT proposal. In particular, we show that the realization of emergent
geometry starting from the N=4 SYM theory in terms of a gas of particles in the
moduli space of vacua of a single D3 brane in flat space gets generalized to a
gas of particles on the moduli space of the corresponding orbifold conformal
field theory (a gas of D3 branes on the orbifold space). Our main purpose is to
show that this can be analyzed using the same techniques as in the N=4 SYM case
by using the method of images, including the measure effects associated to the
volume of the gauge orbit of the configurations. This measure effect gives an
effective repulsion between the particles that makes them condense into a
non-trivial vacuum configuration, and it is exactly these configurations that
lead to the geometry of X in the AdS x X dual field theoryComment: 24 page
Variability in upwelling across the tropical tropopause and correlations with tracers in the lower stratosphere
Temporal variability of the upwelling near the tropical tropopause on daily to annual timescales is investigated using three different estimates computed from the ERA-Interim reanalysis. These include upwelling archived by the reanalysis, plus estimates derived from thermodynamic and momentum balance calculations. Substantial variability in upwelling is observed on both seasonal and sub-seasonal timescales, and the three estimates show reasonably good agreement. Tropical upwelling should exert strong influence on temperatures and on tracers with large vertical gradients in the lower stratosphere. We test this behavior by comparing the calculated upwelling estimates with observed temperatures in the tropical lower stratosphere, and with measurements of ozone and carbon monoxide (CO) from the Aura Microwave Limb Sounder (MLS) satellite instrument. Time series of temperature, ozone and CO are well correlated in the tropical lower stratosphere, and we quantify the influence of tropical upwelling on this joint variability. Strong coherent annual cycles observed in each quantity are found to reflect the seasonal cycle in upwelling. Statistically significant correlations between upwelling, temperatures and tracers are also found for sub-seasonal timescales, demonstrating the importance of upwelling in forcing transient variability in the lower tropical stratosphere
Relationships Between Physical Measurements and Calving Difficulty in Two-Year-Old Santa Gertrudis Heifers
Last updated: 6/1/200
Numerical tests of AdS/CFT at strong coupling
We study various correlation functions (two and three point functions) in a
large matrix model of six commuting matrices with a numerical Monte Carlo
algorithm. This is equivalent to a model of a gas of particles in six
dimensions with a confining quadratic potential and logarithmic repulsions at
finite temperature, where we are measuring the leading order non-gaussianities
in the thermal fluctuations.
This is a simplified model of the low energy dynamics of N=4 SYM at strong
coupling. We find strong evidence that the simplified matrix model matches with
the dual gravitational description of three point functions in the AdS/CFT
correspondence.Comment: 23 pages, 7 figures, revtex. v2: minor correction
Trajectory model simulations of ozone (O<sub>3</sub>) and carbon monoxide (CO) in the lower stratosphere
A domain-filling, forward trajectory model originally developed for
simulating stratospheric water vapor is used to simulate ozone (O3) and
carbon monoxide (CO) in the lower stratosphere. Trajectories are
initialized in the upper troposphere, and the circulation is based on
reanalysis wind fields. In addition, chemical production and loss rates
along trajectories are included using calculations from the Whole Atmosphere
Community Climate Model (WACCM). The trajectory model results show good
overall agreement with satellite observations from the Aura Microwave Limb
Sounder (MLS) and the Atmospheric Chemistry Experiment Fourier Transform
Spectrometer (ACE-FTS) in terms of spatial structure and seasonal
variability. The trajectory model results also agree well with the Eulerian
WACCM simulations. Analysis of the simulated tracers shows that seasonal
variations in tropical upwelling exerts strong influence on O3 and CO
in the tropical lower stratosphere, and the coupled seasonal cycles provide
a useful test of the transport simulations. Interannual variations in the
tracers are also closely coupled to changes in upwelling, and the trajectory
model can accurately capture and explain observed changes during 2005â2011.
This demonstrates the importance of variability in tropical upwelling in
forcing chemical changes in the tropical lower stratosphere
What causes the irregular cycle of the atmospheric tape recorder signal in HCN?
Variations in the mixing ratio of long-lived trace gases entering the stratosphere in the tropics are carried upward with the rising air with the signal being observable throughout the tropical lower stratosphere. This phenomenon, referred to as "atmospheric tape recorder" has previously been observed for water vapor, CO2, and CO which exhibit an annual cycle. Recently, based on Microwave Limb Sounder (MLS) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) satellite measurements, the tape recorder signal has been observed for hydrogen cyanide (HCN) but with an approximately two-year period. Here we report on a model simulation of the HCN tape recorder for the time period 2002-2008 using the Chemical Lagrangian Model of the Stratosphere (CLaMS). The model can reproduce the observed pattern of the HCN tape recorder signal if time-resolved emissions from fires in Indonesia are used as lower boundary condition. This finding indicates that inter-annual variations in biomass burning in Indonesia, which are strongly influenced by El Nino events, control the HCN tape recorder signal. A longer time series of tropical HCN data will probably exhibit an irregular cycle rather than a regular biannual cycle. Citation: Pommrich, R., R. Muller, J.-U. Grooss, G. Gunther, P. Konopka, M. Riese, A. Heil, M. Schultz, H.-C. Pumphrey, and K. A. Walker (2010), What causes the irregular cycle of the atmospheric tape recorder signal in HCN?, Geophys. Res. Lett., 37, L16805, doi:10.1029/2010GL044056
Characteristics of Hunter Harvested Montezuma Quail Wings and Implications for Molt Phenology
We obtained 1,899 hunter-harvested Montezuma quail (Cyrtonyx montezumae) wings from southeastern Arizona, USA, from the 2008â2009 hunting season. We determined age and sex based on plumage characteristics for 98.2% (1,864) of the original sample. One-way analysis of variance (ANOVA) of wing-chord length found differences (P \u3c 0.001) based on sex, but not age, with mean (± standard error) male wing chord (113.76 ± 0.15 mm) longer than mean female wing chord (111.03 ± 0.13 mm). Mean male and female wing-chord lengths from our study population were 6.8% and 7.7% shorter, respectively, than previously reported in the literature. We additionally calculated a complete prebasic molt cycle of 177 days based on previously reported preformative molt patterns. The primary benefits of our results are: 1) a more accurate sex-based wing-chord length based on a large sample size, 2) a method to back-calculate molt onset dates for hunter harvested after hatch year Montezuma quail, and 3) a potential means to model the influence of precipitation on population dynamics of Montezuma quail
Delayed Decision-making in Real-time Beatbox Percussion Classification
This is an electronic version of an article published in Journal of New Music Research, 39(3), 203-213, 2010. doi:10.1080/09298215.2010.512979. Journal of New Music Research is available online at: www.tandfonline.com/openurl?genre=article&issn=1744-5027&volume=39&issue=3&spage=20
Dragging a polymer chain into a nanotube and subsequent release
We present a scaling theory and Monte Carlo (MC) simulation results for a
flexible polymer chain slowly dragged by one end into a nanotube. We also
describe the situation when the completely confined chain is released and
gradually leaves the tube. MC simulations were performed for a self-avoiding
lattice model with a biased chain growth algorithm, the pruned-enriched
Rosenbluth method. The nanotube is a long channel opened at one end and its
diameter is much smaller than the size of the polymer coil in solution. We
analyze the following characteristics as functions of the chain end position
inside the tube: the free energy of confinement, the average end-to-end
distance, the average number of imprisoned monomers, and the average stretching
of the confined part of the chain for various values of and for the number
of monomers in the chain, . We show that when the chain end is dragged by a
certain critical distance into the tube, the polymer undergoes a
first-order phase transition whereby the remaining free tail is abruptly sucked
into the tube. This is accompanied by jumps in the average size, the number of
imprisoned segments, and in the average stretching parameter. The critical
distance scales as . The transition takes place when
approximately 3/4 of the chain units are dragged into the tube. The theory
presented is based on constructing the Landau free energy as a function of an
order parameter that provides a complete description of equilibrium and
metastable states. We argue that if the trapped chain is released with all
monomers allowed to fluctuate, the reverse process in which the chain leaves
the confinement occurs smoothly without any jumps. Finally, we apply the theory
to estimate the lifetime of confined DNA in metastable states in nanotubes.Comment: 13pages, 14figure
- âŠ