328 research outputs found

    Efficacy, Safety, and Timing of Anticoagulant Thromboprophylaxis for the Prevention of Venous Thromboembolism in Patients With Acute Spinal Cord Injury: A Systematic Review

    Get PDF
    Study Design: Systematic review. Objectives: The objective of this study was to answer 5 key questions: What is the comparative effectiveness and safety of (1a) anticoagulant thromboprophylaxis compared to no prophylaxis, placebo, or another anticoagulant strategy for preventing deep vein thrombosis (DVT) and pulmonary embolism (PE) after acute spinal cord injury (SCI)? (1b) Mechanical prophylaxis strategies alone or in combination with other strategies for preventing DVT and PE after acute SCI? (1c) Prophylactic inferior vena cava filter insertion alone or in combination with other strategies for preventing DVT and PE after acute SCI? (2) What is the optimal timing to initiate and/or discontinue anticoagulant, mechanical, and/or prophylactic inferior vena cava filter following acute SCI? (3) What is the cost-effectiveness of these treatment options? Methods: A systematic literature search was conducted to identify studies published through February 28, 2015. We sought randomized controlled trials evaluating efficacy and safety of antithrombotic strategies. Strength of evidence was evaluated using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. Results: Nine studies satisfied inclusion criteria. We found a trend toward lower risk of DVT in patients treated with enoxaparin. There were no significant differences in rates of DVT, PE, bleeding, and mortality between patients treated with different types of low-molecular-weight heparin or between low-molecular-weight heparin and unfractionated heparin. Combined anticoagulant and mechanical prophylaxis initiated within 72 hours of SCI resulted in lower risk of DVT than treatment commenced after 72 hours of injury. Conclusion: Prophylactic treatments can be used to lower the risk of venous thromboembolic events in patients with acute SCI, without significant increase in risk of bleeding and mortality and should be initiated within 72 hours. © 2017, © The Author(s) 2017

    TOPSAN: a dynamic web database for structural genomics

    Get PDF
    The Open Protein Structure Annotation Network (TOPSAN) is a web-based collaboration platform for exploring and annotating structures determined by structural genomics efforts. Characterization of those structures presents a challenge since the majority of the proteins themselves have not yet been characterized. Responding to this challenge, the TOPSAN platform facilitates collaborative annotation and investigation via a user-friendly web-based interface pre-populated with automatically generated information. Semantic web technologies expand and enrich TOPSAN’s content through links to larger sets of related databases, and thus, enable data integration from disparate sources and data mining via conventional query languages. TOPSAN can be found at http://www.topsan.org

    Questioning Classic Patient Classification Techniques in Gait Rehabilitation: Insights from Wearable Haptic Technology

    Get PDF
    Classifying stroke survivors based on their walking abilities is an important part of the gait rehabilitation process. It can act as powerful indicator of function and prognosis in both the early days after a stroke and long after a survivor receives rehabilitation. This classification often relies solely on walking speed; a quick and easy measure, with only a stopwatch needed. However, walking speed may not be the most accurate way of judging individual’s walking ability. Advances in technology mean we are now in a position where ubiquitous and wearable technologies can be used to elicit much richer measures to characterise gait. In this paper we present a case study from one of our studies, where within a homogenous group of stroke survivors (based on walking speed classification) important differences in individual results and the way they responded to rhythmic haptic cueing were identified during the piloting of a novel gait rehabilitation technique

    Factors influencing quality of life following lower limb amputation for peripheral arterial occlusive disease: a systematic review of the literature

    Get PDF
    Background: The majority of lower limb amputations are undertaken in people with peripheral arterial occlusive disease,\ud and approximately 50% have diabetes. Quality of life is an important outcome in lower limb amputations; little is known\ud about what influences it, and therefore how to improve it.\ud Objectives: The aim of this systematic review was to identify the factors that influence quality of life after lower limb\ud amputation for peripheral arterial occlusive disease.\ud Methods: MEDLINE, EMBASE, CINAHL, PsycINFO, Web of Science and Cochrane databases were searched to identify\ud articles that quantitatively measured quality of life in those with a lower limb amputation for peripheral arterial occlusive\ud disease. Articles were quality assessed by two assessors, evidence tables summarised each article and a narrative\ud synthesis was performed.\ud Study design: Systematic review.\ud Results: Twelve articles were included. Study designs and outcome measures used varied. Quality assessment scores\ud ranged from 36% to 92%. The ability to walk successfully with a prosthesis had the greatest positive impact on quality\ud of life. A trans-femoral amputation was negatively associated with quality of life due to increased difficulty in walking\ud with a prosthesis. Other factors such as older age, being male, longer time since amputation, level of social support and\ud presence of diabetes also negatively affected quality of life.\ud Conclusion: Being able to walk with a prosthesis is of primary importance to improve quality of life for people with lower\ud limb amputation due to peripheral arterial occlusive disease. To further understand and improve the quality of life of this\ud population, there is a need for more prospective longitudinal studies, with a standardised outcome measure

    Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain

    Get PDF
    Cadmium (Cd) accumulation in durum wheat grain is a growing concern. Among the factors affecting Cd accumulation in plants, soil chloride (Cl) concentration plays a critical role. The effect of leaf NaCl application on grain Cd was studied in greenhouse-grown durum wheat (Triticum turgidum L. durum, cv. Balcali-2000) by immersing (10 s) intact flag leaves into Cd and/or NaCl-containing solutions for 14 times during heading and dough stages. Immersing flag leaves in solutions containing increasing amount of Cd resulted in substantial increases in grain Cd concentration. Adding NaCl alone or in combination with the Cd-containing immersion solution promoted accumulation of Cd in the grains, by up to 41%. In contrast, Zn concentrations of grains were not affected or even decreased by the NaCl treatments. This is likely due to the effect of Cl complexing Cd and reducing positive charge on the metal ion, an effect that is much smaller for Zn. Charge reduction or removal (CdCl2 0 species) would increase the diffusivity/lipophilicity of Cd and enhance its capability to penetrate the leaf epidermis and across membranes. Of even more significance to human health was the ability of Cl alone to penetrate leaf tissue and mobilize and enhance shoot Cd transfer to grains, yet reducing or not affecting Zn transfer

    A pilot study using tactile cueing for gait rehabilitation following stroke

    Get PDF
    Recovery of walking function is a vital goal of post-stroke rehabilitation. Cueing using audio metronomes has been shown to improve gait, but can be impractical when interacting with others, particularly outdoors where awareness of vehicles and bicycles is essential. Audio is also unsuitable in environments with high background noise, or for those with a hearing impairment. If successful, lightweight portable tactile cueing has the potential to take the benefits of cueing out of the laboratory and into everyday life. The Haptic Bracelets are lightweight wireless devices containing a computer, accelerometers and low-latency vibrotactiles with a wide dynamic range. In this paper we review gait rehabilitation problems and existing solutions, and present an early pilot in which the Haptic Bracelets were applied to post-stroke gait rehabilitation. Tactile cueing during walking was well received in the pilot, and analysis of motion capture data showed immediate improvements in gait

    A Gait Rehabilitation pilot study using tactile cueing following Hemiparetic Stroke

    Get PDF
    Recovery of walking function is a major goal of post-stroke rehabilitation. Audio metronomic cueing has been shown to improve gait, but can be impractical and inconvenient to use in a community setting, for example outdoors where awareness of traffic is needed, as well as being unsuitable in environments with high background noise, or for those with a hearing impairment. Silent lightweight portable tactile cueing, if similarly successful, has the potential to take the benefits out of the lab and into everyday life. The Haptic Bracelets, designed and built at the Open University originally for musical purposes, are self- contained lightweight wireless devices containing a computer, Wi-Fi chip, accelerometers and low-latency vibrotactiles with a wide dynamic range. In this paper we outline gait rehabilitation problems and existing solutions, and present an early pilot in which the Haptic Bracelets were applied to post-stroke gait rehabilitation

    Structural genomics target selection for the New York consortium on membrane protein structure

    Get PDF
    The New York Consortium on Membrane Protein Structure (NYCOMPS), a part of the Protein Structure Initiative (PSI) in the USA, has as its mission to establish a high-throughput pipeline for determination of novel integral membrane protein structures. Here we describe our current target selection protocol, which applies structural genomics approaches informed by the collective experience of our team of investigators. We first extract all annotated proteins from our reagent genomes, i.e. the 96 fully sequenced prokaryotic genomes from which we clone DNA. We filter this initial pool of sequences and obtain a list of valid targets. NYCOMPS defines valid targets as those that, among other features, have at least two predicted transmembrane helices, no predicted long disordered regions and, except for community nominated targets, no significant sequence similarity in the predicted transmembrane region to any known protein structure. Proteins that feed our experimental pipeline are selected by defining a protein seed and searching the set of all valid targets for proteins that are likely to have a transmembrane region structurally similar to that of the seed. We require sequence similarity aligning at least half of the predicted transmembrane region of seed and target. Seeds are selected according to their feasibility and/or biological interest, and they include both centrally selected targets and community nominated targets. As of December 2008, over 6,000 targets have been selected and are currently being processed by the experimental pipeline. We discuss how our target list may impact structural coverage of the membrane protein space
    corecore