87 research outputs found

    Data processing for a cosmic ray experiment onboard the solar probes Helios 1 and 2: Experiment 6

    Get PDF
    The data processing system for the Helios experiment 6, measuring energetic charged particles of solar, planetary and galactic origin in the inner solar system, is described. The aim of this experiment is to extend knowledge on origin and propagation of cosmic rays. The different programs for data reduction, analysis, presentation, and scientific evaluation are described as well as hardware and software of the data processing equipment. A chronological presentation of the data processing operation is given. Procedures and methods for data analysis which were developed can be used with minor modifications for analysis of other space research experiments

    Biological variation in HbA1c predicts risk of retinopathy and nephropathy in type 1 diabetes

    Get PDF
    WSTĘP. Autorzy niniejszej pracy założyli, że ryzyko powikłań mikronaczyniowych w badaniu Diabetes Control and Complications Trial (DCCT) jest uwarunkowane zarówno zmiennością hemoglobiny glikowanej (HbA1c), zależną od średniego stężenia glukozy we krwi (MBG, mean blood glucose), jak i biologiczną zmiennością osobniczą HbA1c. MATERIAŁ I METODY. Wartości MBG i HbA1c, oznaczone u uczestników badania DCCT (n = 1441) podczas wizyt odbywających się co 3 miesiące, poddano analizie według modelu liniowej regresji wieloczynnikowej. W celu oceny zmienności biologicznej podczas każdej wizyty obliczono indeks glikacji hemoglobiny (HGI, hemoglobin glycation index = wartość zmierzona HbA1c&#8211; wartość przewidywana HbA1c), aby ocenić biologiczną zmienność, opierając się na kierunkowych odchyleniach zmierzonej HbA1c od wartości przewidywanej na podstawie MBG. Populację podzielono w zależności od średnich wartości HGI podczas trwania badania na 3 części: o wysokim, średnim i niskim HGI. Dla poszczególnych grup przeprowadzono analizę z zastosowaniem modelu proporcjonalnego hazardu Coxa w celu porównania ryzyka wystąpienia oraz rozwoju retinopatii i nefropatii w zależności od MBG, wieku, sposobu leczenia, grupy prewencji pierwotnej lub interwencji i czasu trwania cukrzycy. WYNIKI. Współczynnik prawdopodobieństwa oraz analizy HGI w testach t podważają twierdzenie, że wartość HbA1c zależy jedynie od MBG. Podczas 7-letniej obserwacji u pacjentów z wysokimi wartościami HbA1c (wyższymi niż oczekiwane) było 3-krotnie wyższe ryzyko retinopatii (30 vs. 9%; p < 0,001) i 6-krotnie wyższe ryzyko nefropatii (6 vs. 1%, p < 0,001) w porównaniu z grupą o niskim HGI. WNIOSKI. Osobnicza biologiczna zmienność HbA1c, odmienna i niezależna od zmienności HbA1c warunkowanej średnią glikemią, występuje niewątpliwie u chorych na cukrzycę typu 1 biorących udział w badaniu DCCT. Ponadto jest silnym czynnikiem ryzyka rozwoju cukrzycy. Określenie procesów odpowiedzialnych za biologiczną zmienność HbA1c mogłoby prowadzić do stworzenia nowych kierunków leczenia hipoglikemizującego oraz opóźniającego powikłania i postęp choroby.INTRODUCTION. We hypothesized that biological variation in HbA1c, distinct from variation attributable to mean blood glucose (MBG), would predict risk for microvascular complications in the Diabetes Control and Complications Trial (DCCT). MATERIAL AND METHODS. A longitudinal multiple regression model was developed from MBG and HbA1c measured in the 1,441 DCCT participants at quarterly visits. A hemoglobin glycation index (HGI = observed HbA1c&#8211;predicted HbA1c) was calculated for each visit to assess biological variation based on the directional deviation of observed HbA1c from that predicted by MBG in the model. The population was subdivided by thirds into high-, moderate-, and low- HGI groups based on mean participant HGI during the study. Cox proportional hazard analysis compared risk for development or progression of retinopathy and nephropathy between HGI groups controlled for MBG, age, treatment group, strata, and duration of diabetes. RESULTS. Likelihood ratio and t tests on HGI rejected the assumption that HbA1c levels were determined by MBG alone. At 7 years&#8217; follow-up, patients in the high-HGI group (higher than-predicted HbA1c) had three times greater risk of retinopathy (30 vs. 9%; P < 0.001) and six times greater risk of nephropathy (6 vs. 1%; P < 0.001) compared with the low- HGI group. CONCLUSIONS. Between-individual biological variation in HbA1c, which is distinct from that attributable to MBG, was evident among type 1 diabetic patients in the DCCT and was a strong predictor of risk for diabetes complications. Identification of the processes responsible for biological variation in HbA1c could lead to novel therapies to augment treatments directed at lowering blood glucose levels and preventing diabetes complications

    The hemoglobin glycation index identifies subpopulations with harms or benefits from intensive treatment in the ACCORD Trial. Diabetes care 2015;38:1067-1074

    Get PDF
    This study tested the hypothesis that intensive treatment in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial disproportionately produced adverse outcomes in patients with diabetes with a high hemoglobin glycation index (HGI = observed HbA1c − predicted HbA1c)

    Cosmic ray measurements on board Helios 1 from December 1974 to September 1975: Quiet time spectra, radial gradients, and solar events

    Get PDF
    The University of Kiel cosmic ray experiment on board Helios 1 measures nucleons above 1. 7 MeV/nucleon and electrons above 0.3 MeV in the inner solar system between 1.0 and 0.3 AU from the Sun. A first survey is given on quiet time proton and Helium spectra which are compared near Earth and close to perihelion. The anomalous Helium component is also present at radial distances within 0.4 AU. Quiet time Helium spectra from 3.8 to 48 MeV/nucleon gradually increase between December 1974 and June 1975. For the integral radial gradient (protons above 51 MeV) we estimate a value of (11±2.5) %/AU during a period of slowly increasing cosmic ray intensity. We discuss solar particle events on January 5 (at 0.93 AU), March 7 (at 0.41 AU), and March 19, 1975 (at 0.32 AU). The March 19 event was measured closer to the Sun than any other event before. It exhibits sharp temporal structures, differences in the time profiles of various particle species, and a large abundance of Helium 3, with a 3He/4He ratio of 2 to 3 in the range 5 to 7 MeV/nucleon. This event occurred close to the peak of a high speed solar wind stream. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ARK: https://n2t.net/ark:/88439/y032443 Permalink: https://geophysicsjournal.com/article/183 &nbsp

    Rethinking the patient: using Burden of Treatment Theory to understand the changing dynamics of illness

    Get PDF
    &lt;b&gt;Background&lt;/b&gt; In this article we outline Burden of Treatment Theory, a new model of the relationship between sick people, their social networks, and healthcare services. Health services face the challenge of growing populations with long-term and life-limiting conditions, they have responded to this by delegating to sick people and their networks routine work aimed at managing symptoms, and at retarding - and sometimes preventing - disease progression. This is the new proactive work of patient-hood for which patients are increasingly accountable: founded on ideas about self-care, self-empowerment, and self-actualization, and on new technologies and treatment modalities which can be shifted from the clinic into the community. These place new demands on sick people, which they may experience as burdens of treatment.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Discussion&lt;/b&gt; As the burdens accumulate some patients are overwhelmed, and the consequences are likely to be poor healthcare outcomes for individual patients, increasing strain on caregivers, and rising demand and costs of healthcare services. In the face of these challenges we need to better understand the resources that patients draw upon as they respond to the demands of both burdens of illness and burdens of treatment, and the ways that resources interact with healthcare utilization.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Summary&lt;/b&gt; Burden of Treatment Theory is oriented to understanding how capacity for action interacts with the work that stems from healthcare. Burden of Treatment Theory is a structural model that focuses on the work that patients and their networks do. It thus helps us understand variations in healthcare utilization and adherence in different healthcare settings and clinical contexts
    corecore