4,352 research outputs found

    The Two Phases of Galaxy Formation

    Full text link
    Cosmological simulations of galaxy formation appear to show a two-phase character with a rapid early phase at z>2 during which in-situ stars are formed within the galaxy from infalling cold gas followed by an extended phase since z<3 during which ex-situ stars are primarily accreted. In the latter phase massive systems grow considerably in mass and radius by accretion of smaller satellite stellar systems formed at quite early times (z>3) outside of the virial radius of the forming central galaxy. These tentative conclusions are obtained from high resolution re-simulations of 39 individual galaxies in a full cosmological context with present-day virial halo masses ranging from 7e11 M_sun h^-1 < M_vir < 2.7e13 M_sun h^-1 and central galaxy masses between 4.5e10 M_sun h^-1 < M_* < 3.6e11 M_sun h^-1. The simulations include the effects of a uniform UV background, radiative cooling, star formation and energetic feedback from SNII. The importance of stellar accretion increases with galaxy mass and towards lower redshift. In our simulations lower mass galaxies (M<9e10Msunh1)accreteabout60percentoftheirpresentdaystellarmass.Highmassgalaxy(M_* < 9e10 M_sun h^-1) accrete about 60 per cent of their present-day stellar mass. High mass galaxy (M_* > 1.7e11 M_sun h^-1) assembly is dominated by accretion and merging with about 80 per cent of the stars added by the present-day. In general the simulated galaxies approximately double their mass since z=1. For massive systems this mass growth is not accompanied by significant star formation. The majority of the in-situ created stars is formed at z>2, primarily out of cold gas flows. We recover the observational result of archaeological downsizing, where the most massive galaxies harbor the oldest stars. We find that this is not in contradiction with hierarchical structure formation. Most stars in the massive galaxies are formed early on in smaller structures, the galaxies themselves are assembled late.Comment: 13 pages, 13 figures, accepted for publication in Ap

    Functional correlates of positional and gender-specific renal asymmetry in drosophila

    Get PDF
    Accordingly, the physical asymmetry of the tubules in the body cavity is directly adaptive. Now that the detailed machinery underlying internal asymmetry is starting to be delineated, our work invites the investigation, not just of tissues in isolation, but in the context of their unique physical locations and milieux

    On the domain wall partition functions of level-1 affine so(n) vertex models

    Full text link
    We derive determinant expressions for domain wall partition functions of level-1 affine so(n) vertex models, n >= 4, at discrete values of the crossing parameter lambda = m pi / 2(n-3), m in Z, in the critical regime.Comment: 14 pages, 13 figures included in latex fil

    Latent Space Model for Multi-Modal Social Data

    Full text link
    With the emergence of social networking services, researchers enjoy the increasing availability of large-scale heterogenous datasets capturing online user interactions and behaviors. Traditional analysis of techno-social systems data has focused mainly on describing either the dynamics of social interactions, or the attributes and behaviors of the users. However, overwhelming empirical evidence suggests that the two dimensions affect one another, and therefore they should be jointly modeled and analyzed in a multi-modal framework. The benefits of such an approach include the ability to build better predictive models, leveraging social network information as well as user behavioral signals. To this purpose, here we propose the Constrained Latent Space Model (CLSM), a generalized framework that combines Mixed Membership Stochastic Blockmodels (MMSB) and Latent Dirichlet Allocation (LDA) incorporating a constraint that forces the latent space to concurrently describe the multiple data modalities. We derive an efficient inference algorithm based on Variational Expectation Maximization that has a computational cost linear in the size of the network, thus making it feasible to analyze massive social datasets. We validate the proposed framework on two problems: prediction of social interactions from user attributes and behaviors, and behavior prediction exploiting network information. We perform experiments with a variety of multi-modal social systems, spanning location-based social networks (Gowalla), social media services (Instagram, Orkut), e-commerce and review sites (Amazon, Ciao), and finally citation networks (Cora). The results indicate significant improvement in prediction accuracy over state of the art methods, and demonstrate the flexibility of the proposed approach for addressing a variety of different learning problems commonly occurring with multi-modal social data.Comment: 12 pages, 7 figures, 2 table

    Cascades: A view from Audience

    Full text link
    Cascades on online networks have been a popular subject of study in the past decade, and there is a considerable literature on phenomena such as diffusion mechanisms, virality, cascade prediction, and peer network effects. However, a basic question has received comparatively little attention: how desirable are cascades on a social media platform from the point of view of users? While versions of this question have been considered from the perspective of the producers of cascades, any answer to this question must also take into account the effect of cascades on their audience. In this work, we seek to fill this gap by providing a consumer perspective of cascade. Users on online networks play the dual role of producers and consumers. First, we perform an empirical study of the interaction of Twitter users with retweet cascades. We measure how often users observe retweets in their home timeline, and observe a phenomenon that we term the "Impressions Paradox": the share of impressions for cascades of size k decays much slower than frequency of cascades of size k. Thus, the audience for cascades can be quite large even for rare large cascades. We also measure audience engagement with retweet cascades in comparison to non-retweeted content. Our results show that cascades often rival or exceed organic content in engagement received per impression. This result is perhaps surprising in that consumers didn't opt in to see tweets from these authors. Furthermore, although cascading content is widely popular, one would expect it to eventually reach parts of the audience that may not be interested in the content. Motivated by our findings, we posit a theoretical model that focuses on the effect of cascades on the audience. Our results on this model highlight the balance between retweeting as a high-quality content selection mechanism and the role of network users in filtering irrelevant content

    Recruitment Facilitation and Spatial Pattern Formation in Soft-Bottom Mussel Beds

    Full text link
    Mussels (Mytilus edulis) build massive, spatially complex, biogenic structures that alter the biotic and abiotic environment and provide a variety of ecosystem services. Unlike rocky shores, where mussels can attach to the primary substrate, soft sediments are unsuitable for mussel attachment. We used a simple lattice model, field sampling, and field and laboratory experiments to examine facilitation of recruitment (i.e., preferential larval, juvenile, and adult attachment to mussel biogenic structure) and its role in the development of power-law spatial patterns observed in Maine, USA, soft-bottom mussel beds. The model demonstrated that recruitment facilitation produces power-law spatial structure similar to that in natural beds. Field results provided strong evidence for facilitation of recruitment to other mussels—they do not simply map onto a hard-substrate template of gravel and shell hash. Mussels were spatially decoupled from non-mussel hard substrates to which they can potentially recruit. Recent larval recruits were positively correlated with adult mussels, but not with other hard substrates. Mussels made byssal thread attachments to other mussels in much higher proportions than to other hard substrates. In a field experiment, mussel recruitment was highest to live mussels, followed by mussel shell hash and gravel, with almost no recruitment to muddy sand. In a laboratory experiment, evenly dispersed mussels rapidly self-organized into power-law clusters similar to those observed in nature. Collectively, the results indicate that facilitation of recruitment to existing mussels plays a major role in soft-bottom spatial pattern development. The interaction between large-scale resource availability (hard substrate) and local-scale recruitment facilitation may be responsible for creating complex power-law spatial structure in soft-bottom mussel beds

    The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules

    Get PDF
    Multicellular organisms rely on cell adhesion molecules to coordinate cell–cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role Fas2 serves in this epithelium is unknown. Here we show that Fas2 is essential to brush border maintenance in renal tubules of Drosophila. Fas2 is dynamically expressed during tubule morphogenesis, localizing to the brush border whenever the tissue is transport competent. Genetic manipulations of Fas2 expression levels impact on both microvilli length and organization, which in turn dramatically affect stimulated rates of fluid secretion by the tissue. Consequently, we demonstrate a radically different role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border

    Game saturation of intersecting families

    Get PDF
    We consider the following combinatorial game: two players, Fast and Slow, claim kk-element subsets of [n]={1,2,...,n}[n]=\{1,2,...,n\} alternately, one at each turn, such that both players are allowed to pick sets that intersect all previously claimed subsets. The game ends when there does not exist any unclaimed kk-subset that meets all already claimed sets. The score of the game is the number of sets claimed by the two players, the aim of Fast is to keep the score as low as possible, while the aim of Slow is to postpone the game's end as long as possible. The game saturation number is the score of the game when both players play according to an optimal strategy. To be precise we have to distinguish two cases depending on which player takes the first move. Let gsatF(In,k)gsat_F(\mathbb{I}_{n,k}) and gsatS(In,k)gsat_S(\mathbb{I}_{n,k}) denote the score of the saturation game when both players play according to an optimal strategy and the game starts with Fast's or Slow's move, respectively. We prove that Ωk(nk/35)gsatF(In,k),gsatS(In,k)Ok(nkk/2)\Omega_k(n^{k/3-5}) \le gsat_F(\mathbb{I}_{n,k}),gsat_S(\mathbb{I}_{n,k}) \le O_k(n^{k-\sqrt{k}/2}) holds

    Correlations, spectral gap, and entanglement in harmonic quantum systems on generic lattices

    Full text link
    We investigate the relationship between the gap between the energy of the ground state and the first excited state and the decay of correlation functions in harmonic lattice systems. We prove that in gapped systems, the exponential decay of correlations follows for both the ground state and thermal states. Considering the converse direction, we show that an energy gap can follow from algebraic decay and always does for exponential decay. The underlying lattices are described as general graphs of not necessarily integer dimension, including translationally invariant instances of cubic lattices as special cases. Any local quadratic couplings in position and momentum coordinates are allowed for, leading to quasi-free (Gaussian) ground states. We make use of methods of deriving bounds to matrix functions of banded matrices corresponding to local interactions on general graphs. Finally, we give an explicit entanglement-area relationship in terms of the energy gap for arbitrary, not necessarily contiguous regions on lattices characterized by general graphs.Comment: 26 pages, LaTeX, published version (figure added

    Development and initial testing of the person-centred health care for older adults survey.

    Get PDF
    Background: Health services are encouraged to adopt a strong person-centered approach to the provision of care and services for older people. The aim of this project was to establish a user-friendly, psychometrically valid, and reliable measure of healthcare staff’s practice, attitudes, and beliefs regarding person-centered healthcare. Methods: Item reduction (factor analysis) of a previously developed “benchmarking person-centred care” survey, followed by psychometric evaluations of the internal consistency reliability and construct validity, was conducted. The initial survey was completed by 1,428 healthcare staff from 17 health services across Victoria, Australia. Results: After removing 17 items from the previously developed “benchmarking person-centred care” survey, the revised 31-item survey (Person-Centred Health Care for Older Adults Survey) attained eight factors that explain 62.7% of the total variance with a Cronbach’s α coefficient of 0.91, indicating excellent internal consistency. Expert consultation confirmed that the revised survey had content validity. Conclusions: The results indicated that the Person-Centred Health Care for Older Adults Survey is a user-friendly, psychometrically valid, and reliable measure of staff perceptions of person-centered healthcare for use in hospital settings
    corecore