62 research outputs found

    Accelerated Springtime Melt of Snow on Tundra Downwind from Northern Alaska River Systems Resulting from Niveo-aeolian Deposition Events

    Get PDF
    It is well known that light-absorbing particulate matter (PM) enhances absorption of sunlight when deposited on ice and snow. Such increased absorption is due to a reduction in surface albedo, resulting in accelerated melt of frozen surfaces. In isolation, earlier melt enhances Arctic warming since dark surfaces underlying snow and ice are exposed and absorb additional solar energy. Here, we combine various observational tools to demonstrate that aeolian deposition of PM along fluvial features on the North Slope of Alaska resulted in a notable reduction of surface albedo in the spring of 2016, from values typical for snow (~0.8) to around 0.35 on average. This reduction resulted in accelerated snow and ice melt by up to three weeks compared to unaffected areas. This phenomenon was observed to some degree in 12 other years dating back to 2003. Deposition generally was found to occur near particular sections of the rivers, with several areas affected by events in multiple years. In all years, the deposition is attributed to high wind events. The extreme case in 2016 is linked to unusually strong and extraordinarily persistent winds during April. The deposited material is thought to be the natural sediment carried by the rivers, resulting in a seasonally replenished source of PM. These findings indicate a previously unreported impact of both fluvial and atmospheric processes on the seasonal melt of northern Alaska rivers.Il s’agit d’un fait bien connu que la matiĂšre particulaire photo-absorbante rehausse l’absorption de la lumiĂšre solaire lorsqu’elle est dĂ©posĂ©e sur la glace et la neige. Cette absorption accrue est attribuable Ă  la rĂ©duction de l’albĂ©do de la surface, ce qui se traduit par la fonte accĂ©lĂ©rĂ©e des surfaces glacĂ©es. Individuellement, la fonte hĂątive augmente le rĂ©chauffement de l’Arctique parce que les surfaces sombres se trouvant sous la neige et la glace sont exposĂ©es et absorbent l’énergie solaire supplĂ©mentaire. Ici, nous recourons Ă  divers outils d’observation pour montrer que le dĂ©pĂŽt Ă©olien de matiĂšre particulaire le long des caractĂ©ristiques fluviales de la North Slope de l’Alaska a entraĂźnĂ© une rĂ©duction notable de l’albĂ©do de la surface au printemps de 2016, passant de valeurs typiques pour la neige de (~ 0,8) Ă  environ 0,35 en moyenne. Cette rĂ©duction a donnĂ© lieu Ă  l’accĂ©lĂ©ration de la fonte de la neige et de la glace dans une mesure de trois semaines comparativement aux endroits qui n’ont pas Ă©tĂ© touchĂ©s par la rĂ©duction. Ce phĂ©nomĂšne a Ă©tĂ© observĂ© dans une certaine mesure pendant 12 autres annĂ©es, remontant en 2003. De maniĂšre gĂ©nĂ©rale, des dĂ©pĂŽts se sont ramassĂ©s prĂšs de segments particuliers des cours d’eau, et plusieurs des secteurs ont Ă©tĂ© touchĂ©s par des Ă©vĂ©nements au cours de plusieurs annĂ©es. Dans l’ensemble, les dĂ©pĂŽts sont attribuĂ©s Ă  des vents violents. Le cas extrĂȘme de 2016 dĂ©coule de vents inhabituellement forts et extraordinairement persistants en avril. La matiĂšre dĂ©posĂ©e serait peut-ĂȘtre du sĂ©diment naturel transportĂ© par les cours d’eau, ce qui donne lieu au rĂ©approvisionnement saisonnier de la source de matiĂšre particulaire. Ces constatations mĂšnent Ă  une incidence antĂ©rieurement non dĂ©clarĂ©e des processus fluviaux et atmosphĂ©riques sur la fonte saisonniĂšre des cours d’eau du nord de l’Alaska

    Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location

    Get PDF
    Aerosols that serve as ice nucleating particles (INPs) have the potential to modulate cloud microphysical properties and can therefore impact cloud radiative forcing (CRF) and precipitation formation processes. In remote regions such as the Arctic, aerosol–cloud interactions are severely understudied yet may have significant implications for the surface energy budget and its impact on sea ice and snow surfaces. Further, uncertainties in model representations of heterogeneous ice nucleation are a significant hindrance to simulating Arctic mixed-phase cloud processes. We present results from a campaign called INPOP (Ice Nucleating Particles at Oliktok Point), which took place at a US Department of Energy Atmospheric Radiation Measurement (DOE ARM) facility in the northern Alaskan Arctic. Three time- and size-resolved aerosol impactors were deployed from 1 March to 31 May 2017 for offline ice nucleation and chemical analyses and were co-located with routine measurements of aerosol number and size. The largest particles (i.e., ≄&thinsp;3&thinsp;”m or “coarse mode”) were the most efficient INPs by inducing freezing at the warmest temperatures. During periods with snow- and ice-covered surfaces, coarse mode INP concentrations were very low (maximum of 6&thinsp;×&thinsp;10−4&thinsp;L−1 at −15&thinsp;∘C), but higher concentrations of warm-temperature INPs were observed during late May (maximum of 2&thinsp;×&thinsp;10−2&thinsp;L−1 at −15&thinsp;∘C). These higher concentrations were attributed to air masses originating from over open Arctic Ocean water and tundra surfaces. To our knowledge, these results represent the first INP characterization measurements in an Arctic oilfield location and demonstrate strong influences from mineral and marine sources despite the relatively high springtime pollution levels. Ultimately, these results can be used to evaluate the anthropogenic and natural influences on aerosol composition and Arctic cloud properties.</p

    Contrasting local and long-range-transported warm ice-nucleating particles during an atmospheric river in coastal California, USA

    Get PDF
    Ice-nucleating particles (INPs) have been found to influence the amount, phase and efficiency of precipitation from winter storms, including atmospheric rivers. Warm INPs, those that initiate freezing at temperatures warmer than −10&thinsp;∘C, are thought to be particularly impactful because they can create primary ice in mixed-phase clouds, enhancing precipitation efficiency. The dominant sources of warm INPs during atmospheric rivers, the role of meteorology in modulating transport and injection of warm INPs into atmospheric river clouds, and the impact of warm INPs on mixed-phase cloud properties are not well-understood. In this case study, time-resolved precipitation samples were collected during an atmospheric river in northern California, USA, during winter 2016. Precipitation samples were collected at two sites, one coastal and one inland, which are separated by about 35&thinsp;km. The sites are sufficiently close that air mass sources during this storm were almost identical, but the inland site was exposed to terrestrial sources of warm INPs while the coastal site was not. Warm INPs were more numerous in precipitation at the inland site by an order of magnitude. Using FLEXPART (FLEXible PARTicle dispersion model) dispersion modeling and radar-derived cloud vertical structure, we detected influence from terrestrial INP sources at the inland site but did not find clear evidence of marine warm INPs at either site. We episodically detected warm INPs from long-range-transported sources at both sites. By extending the FLEXPART modeling using a meteorological reanalysis, we demonstrate that long-range-transported warm INPs were observed only when the upper tropospheric jet provided transport to cloud tops. Using radar-derived hydrometeor classifications, we demonstrate that hydrometeors over the terrestrially influenced inland site were more likely to be in the ice phase for cloud temperatures between 0 and −10&thinsp;∘C. We thus conclude that terrestrial and long-range-transported aerosol were important sources of warm INPs during this atmospheric river. Meteorological details such as transport mechanism and cloud structure were important in determining (i) warm INP source and injection temperature and (ii) ultimately the impact of warm INPs on mixed-phase cloud properties.</p

    The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds

    Get PDF
    This study investigates the interactions between cloud dynamics and aerosols in idealized large-eddy simulations (LES) of Arctic mixed-phase stratocumulus clouds (AMPS) observed at Oliktok Point, Alaska, in April 2015. This case was chosen because it allows the cloud to form in response to radiative cooling starting from a cloud-free state, rather than requiring the cloud ice and liquid to adjust to an initial cloudy state. Sensitivity studies are used to identify whether there are buffering feedbacks that limit the impact of aerosol perturbations. The results of this study indicate that perturbations in ice nucleating particles (INPs) dominate over cloud condensation nuclei (CCN) perturbations; i.e., an equivalent fractional decrease in CCN and INPs results in an increase in the cloud-top longwave cooling rate, even though the droplet effective radius increases and the cloud emissivity decreases. The dominant effect of ice in the simulated mixed-phase cloud is a thinning rather than a glaciation, causing the mixed-phase clouds to radiate as a grey body and the radiative properties of the cloud to be more sensitive to aerosol perturbations. It is demonstrated that allowing prognostic CCN and INPs causes a layering of the aerosols, with increased concentrations of CCN above cloud top and increased concentrations of INPs at the base of the cloud-driven mixed layer. This layering contributes to the maintenance of the cloud liquid, which drives the dynamics of the cloud system.</p

    Interannual Variations in Aerosol Sources and Their Impact on Orographic Precipitation Over California's Central Sierra Nevada

    Get PDF
    Aerosols that serve as cloud condensation nuclei (CCN) and ice nuclei (IN) have the potential to profoundly influence precipitation processes. Furthermore, changes in orographic precipitation have broad implications for reservoir storage and flood risks. As part of the CalWater I field campaign (2009-2011), the impacts of aerosol sources on precipitation were investigated in the California Sierra Nevada. In 2009, the precipitation collected on the ground was influenced by both local biomass burning (up to 79% of the insoluble residues found in precipitation) and long-range transported dust and biological particles (up to 80% combined), while in 2010, by mostly local sources of biomass burning and pollution (30-79% combined), and in 2011 by mostly long-range transport from distant sources (up to 100% dust and biological). Although vast differences in the source of residues was observed from year-to-year, dust and biological residues were omnipresent (on average, 55% of the total residues combined) and were associated with storms consisting of deep convective cloud systems and larger quantities of precipitation initiated in the ice phase. Further, biological residues were dominant during storms with relatively warm cloud temperatures (up to -15 C), suggesting these particles were more efficient IN compared to mineral dust. On the other hand, lower percentages of residues from local biomass burning and pollution were observed (on average 31% and 9%, respectively), yet these residues potentially served as CCN at the base of shallow cloud systems when precipitation quantities were low. The direct connection of the source of aerosols within clouds and precipitation type and quantity can be used in models to better assess how local emissions versus long-range transported dust and biological aerosols play a role in impacting regional weather and climate, ultimately with the goal of more accurate predictive weather forecast models and water resource management

    HOVERCAT: a novel aerial system for evaluation of aerosol–cloud interactions

    Get PDF
    Aerosols have a profound impact on cloud microphysics through their ability to serve as ice nucleating particles (INPs). As a result, cloud radiative properties and precipitation processes can be modulated by such aerosol–cloud interactions. However, one of the largest uncertainties associated with atmospheric processes is the indirect effect of aerosols on clouds. The need for more advanced observations of INPs in the atmospheric vertical profile is apparent, yet most ice nucleation measurements are conducted on the ground or during infrequent and intensive airborne field campaigns. Here, we describe a novel measurement platform that is less expensive and smaller (&lt; 5 kg) when compared to traditional aircraft and tethered balloon platforms and that can be used for evaluating two modes of ice nucleation (i.e., immersion and deposition). HOVERCAT (Honing On VERtical Cloud and Aerosol properTies) flew during a pilot study in Colorado, USA, up to 2.6 km above mean sea level (1.1 km above ground level) and consists of an aerosol module that includes an optical particle counter for size distributions (0.38–17 ”m in diameter) and a new sampler that collects up to 10 filter samples for offline ice nucleation and aerosol analyses on a launched balloon platform. During the May 2017 test flight, total particle concentrations were highest closest to the ground (up to 50 cm−3 at &lt; 50 m above ground level) and up to 2 in 102 particles were ice nucleation active in the immersion mode (at −23 °C). The warmest temperature immersion and deposition mode INPs (observed up to −6 and −40.4 °C, respectively) were observed closest to the ground, but overall INP concentrations did not exhibit an inverse correlation with increasing altitude. HOVERCAT is a prototype that can be further modified for other airborne platforms, including tethered balloon and unmanned aircraft systems. The versatility of HOVERCAT affords future opportunities to profile the atmospheric column for more comprehensive evaluations of aerosol–cloud interactions. Based on our test flight experiences, we provide a set of recommendations for future deployments of similar measurement systems and platforms.</p

    Evaluating the potential for Haloarchaea to serve as ice nucleating particles

    Get PDF
    Aerosols play a crucial role in cloud formation. Biologically derived materials from bacteria, fungi, pollen, lichen, viruses, algae, and diatoms can serve as ice nucleating particles (INPs), some of which initiate glaciation in clouds at relatively warm freezing temperatures. However, determining the magnitude of the interactions between clouds and biologically derived INPs remains a significant challenge due to the diversity and complexity of bioaerosols and limited observations of such aerosols facilitating cloud ice formation. Additionally, microorganisms from the domain Archaea have, to date, not been evaluated as INPs. Here, we present the first results reporting the ice nucleation activity of four species in the class Haloarchaea. Intact cells of Halococcus morrhuae and Haloferax sulfurifontis demonstrated the ability to induce immersion freezing at temperatures up to −18 ∘C, while lysed cells of Haloquadratum walsbyi and Natronomonas pharaonis were unable to serve as immersion INPs. Exposure to heat and peroxide digestion indicated that the INPs of intact cells were driven by organic (H. morrhuae and H. sulfurifontis) and possibly also heat labile materials (H. sulfurifontis only). While halophiles are prominent in hypersaline environments such as the Great Salt Lake and the Dead Sea, other members of the Archaea, such as methanogens and thermophiles, are prevalent in anoxic systems in seawater, sea ice, marine sediments, glacial ice, permafrost, and other cold niches. Archaeal extremophiles are both diverse and highly abundant. Thus, it is important to assess their ability to serve as INPs as it may lead to an improved understanding of biological impacts on clouds.</p

    Annual cycle observations of aerosols capable of ice formation in central Arctic clouds

    Get PDF
    The Arctic is warming faster than anywhere else on Earth, prompting glacial melt, permafrost thaw, and sea ice decline. These severe consequences induce feedbacks that contribute to amplified warming, affecting weather and climate globally. Aerosols and clouds play a critical role in regulating radiation reaching the Arctic surface. However, the magnitude of their effects is not adequately quantified, especially in the central Arctic where they impact the energy balance over the sea ice. Specifically, aerosols called ice nucleating particles (INPs) remain understudied yet are necessary for cloud ice production and subsequent changes in cloud lifetime, radiative effects, and precipitation. Here, we report observations of INPs in the central Arctic over a full year, spanning the entire sea ice growth and decline cycle. Further, these observations are size-resolved, affording valuable information on INP sources. Our results reveal a strong seasonality of INPs, with lower concentrations in the winter and spring controlled by transport from lower latitudes, to enhanced concentrations of INPs during the summer melt, likely from marine biological production in local open waters. This comprehensive characterization of INPs will ultimately help inform cloud parameterizations in models of all scales
    • 

    corecore