2,307 research outputs found

    Semi-blind identification of wideband MIMO channels via stochastic sampling

    Get PDF

    Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600

    Get PDF
    In the present study alloy 600 was tested in simulated pressurised water reactor (PWR) primary water, at 360 °C, under an hydrogen partial pressure of 30 kPa. These testing conditions correspond to the maximum sensitivity of alloy 600 to crack initiation. The resulting oxidised structures (corrosion scale and underlying metal) were characterised. A chromium rich oxide layer was revealed, the underlying metal being chromium depleted. In addition, analysis of the chemical composition of the metal close to the oxide scale had allowed to detect oxygen under the oxide scale and particularly in a triple grain boundary. Implication of such a finding on the crack initiation of alloy 600 is discussed. Significant diminution of the crack initiation time was observed for sample oxidised before stress corrosion tests. In view of these results, a mechanism for stress corrosion crack initiation of alloy 600 in PWR primary water was proposed

    Size effect on magnetism of Fe thin films in Fe/Ir superlattices

    Full text link
    In ferromagnetic thin films, the Curie temperature variation with the thickness is always considered as continuous when the thickness is varied from nn to n+1n+1 atomic planes. We show that it is not the case for Fe in Fe/Ir superlattices. For an integer number of atomic planes, a unique magnetic transition is observed by susceptibility measurements, whereas two magnetic transitions are observed for fractional numbers of planes. This behavior is attributed to successive transitions of areas with nn and n+1n+1 atomic planes, for which the TcT_c's are not the same. Indeed, the magnetic correlation length is presumably shorter than the average size of the terraces. Monte carlo simulations are performed to support this explanation.Comment: LaTeX file with Revtex, 5 pages, 5 eps figures, to appear in Phys. Rev. Let

    An oxygen isotope record of lacustrine opal from a European Maar indicates climatic stability during the Last Interglacial

    Get PDF
    The penultimate temperate period, 127–110 ka before present (BP), bracketed by abrupt shifts of the global climate system initiating and terminating it, is considered as an analogue of the Holocene because of a similar low global ice‐volume. Ice core records as well as continental and marine records exhibit conflicting evidence concerning the climate variability within this period, the Last Interglacial. We present, for the first time, a high‐resolution record of oxygen isotopes in diatom opal of the Last Interglacial obtained from the Ribains Maar in France (44°50′09″N 3°49′16″E). Our results indicate that the Last Interglacial in southwestern Europe was generally a period of climatic stability. The record shows that the temperate period was initiated by an abrupt warm event followed midway by a minor climatic transition to a colder climate. An abrupt isotopic depletion that occurs simultaneously with abrupt changes in pollen and diatom assemblages marks the end of the temperate period, and is correlative with the Melisey I stadial. Variations in the isotopic composition of lake‐water related to the isotopic composition of precipitation and evaporation dominate the biogenic opal oxygen isotope record

    Finite-size scaling in thin Fe/Ir(100) layers

    Full text link
    The critical temperature of thin Fe layers on Ir(100) is measured through M\"o{\ss}bauer spectroscopy as a function of the layer thickness. From a phenomenological finite-size scaling analysis, we find an effective shift exponent lambda = 3.15 +/- 0.15, which is twice as large as the value expected from the conventional finite-size scaling prediction lambda=1/nu, where nu is the correlation length critical exponent. Taking corrections to finite-size scaling into account, we derive the effective shift exponent lambda=(1+2\Delta_1)/nu, where Delta_1 describes the leading corrections to scaling. For the 3D Heisenberg universality class, this leads to lambda = 3.0 +/- 0.1, in agreement with the experimental data. Earlier data by Ambrose and Chien on the effective shift exponent in CoO films are also explained.Comment: Latex, 4 pages, with 2 figures, to appear in Phys. Rev. Lett

    Homogeneous Approximation, Recursive Observer Design, and Output Feedback

    Full text link
    We introduce two new tools that can be useful in nonlinear observer and output feedback design. The first one is a simple extension of the notion of homogeneous approximation to make it valid both at the origin and at infinity (homogeneity in the bi-limit). Exploiting this extension, we give several results concerning stability and robustness for a homogeneous in the bi-limit vector field. The second tool is a new recursive observer design procedure for a chain of integrator. Combining these two tools, we propose a new global asymptotic stabilization result by output feedback for feedback and feedforward systems

    Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks

    Get PDF
    Undirected graphical models are widely used in statistics, physics and machine vision. However Bayesian parameter estimation for undirected models is extremely challenging, since evaluation of the posterior typically involves the calculation of an intractable normalising constant. This problem has received much attention, but very little of this has focussed on the important practical case where the data consists of noisy or incomplete observations of the underlying hidden structure. This paper specifically addresses this problem, comparing two alternative methodologies. In the first of these approaches particle Markov chain Monte Carlo (Andrieu et al., 2010) is used to efficiently explore the parameter space, combined with the exchange algorithm (Murray et al., 2006) for avoiding the calculation of the intractable normalising constant (a proof showing that this combination targets the correct distribution in found in a supplementary appendix online). This approach is compared with approximate Bayesian computation (Pritchard et al., 1999). Applications to estimating the parameters of Ising models and exponential random graphs from noisy data are presented. Each algorithm used in the paper targets an approximation to the true posterior due to the use of MCMC to simulate from the latent graphical model, in lieu of being able to do this exactly in general. The supplementary appendix also describes the nature of the resulting approximation.Comment: 26 pages, 2 figures, accepted in Journal of Computational and Graphical Statistics (http://www.amstat.org/publications/jcgs.cfm

    Nitrogen Acquisition and Utilization by Crops: Review of Different Approaches and Proposition of a Mechanistic Modeling

    Get PDF

    Ultra-High-density 3D vertical RRAM with stacked JunctionLess nanowires for In-Memory-Computing applications

    Full text link
    The Von-Neumann bottleneck is a clear limitation for data-intensive applications, bringing in-memory computing (IMC) solutions to the fore. Since large data sets are usually stored in nonvolatile memory (NVM), various solutions have been proposed based on emerging memories, such as OxRAM, that rely mainly on area hungry, one transistor (1T) one OxRAM (1R) bit-cell. To tackle this area issue, while keeping the programming control provided by 1T1R bit-cell, we propose to combine gate-all-around stacked junctionless nanowires (1JL) and OxRAM (1R) technology to create a 3-D memory pillar with ultrahigh density. Nanowire junctionless transistors have been fabricated, characterized, and simulated to define current conditions for the whole pillar. Finally, based on Simulation Program with Integrated Circuit Emphasis (SPICE) simulations, we demonstrated successfully scouting logic operations up to three-pillar layers, with one operand per layer

    Electron-hadron shower discrimination in a liquid argon time projection chamber

    Get PDF
    By exploiting structural differences between electromagnetic and hadronic showers in a multivariate analysis we present an efficient Electron-Hadron discrimination algorithm for liquid argon time projection chambers, validated using Geant4 simulated data
    corecore