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Abstract- In this paper we address the problem of wide- 
hand Multiple-Input Multiple-Output (MIMO) channel (multidi- 
mensional time invariant FIR filter) identlcation using Markov 
Chains Monte Carlo Methods. Towards this end we develop a 
novel stochastic sampling technique that produces a sequence of 
multidimensional channel samples. The method is semi-blind in 
the sense that it uses a very short training sequence. In such a 
framework the problem is no longer analytically tractable; hence 
we resort to stochastic sampling techniques. The developed tech- 
nique samples the channel, the variance of the noise and the sym- 
bols in order to build an ergodic Markov chain whose equilibrium 
distribution is the distribution of interest. The estimates of the 
MIMO channel and the noise variance are inferred from marginal 
posterior distributions, which are by-products of the output of the 
algorithm. 

Index Terms- MCMC, Stochastic Sampling, MIMO, l h r b  
pinaple 

I. INTRODUCTION 
A plethora of space-time signal processing and codimg tech- 

niques have recently emerged in pursuit of the vast capaci- 
ties promised by the "generalised Shannon theorem". Vari- 
ous flavours of iterative (Turbo) and non-iterative MIMO sig- 
nal processing schemes have been proposed for that p u p a e .  
More generally, detection of information transmitted over the 
wireless networks is an example of inference in latent variable 
models. qpically, a prime concem of the estimation process is 
with the actual data. The parameters characterising the wireless 
channel (channel transfer function, noise etc.) are just nuisance 
parameters. However, the detection problem complexity can 
be reduced if the channel transfer functions can be estimated 
first. Subsequently, the channel estimates can be plugged into a 
somewhat easier data detection problem. 

In this paper we address the problem of Wideband MIMO 
channel identification from noisy and distorted observations us- 
ing Markov chain Monte Carlo (MCMC) methods. MCMC 
techniques originate in statistical physics and were popularised 
in statistics and machine learning communities [I]. However, 
recently MCMC receive a great deal of interest amongst the 
communications research community [2] as well. 

In our problem, we assume partial knowledge of the trans- 
mitted sequence to avoid identification ambiguities, which can- 

not be resolved otherwise (semi-blind framework). In the case 
where all training sequences are known at the receiver, the 
channel estimates can be evaluated analytically (e.g. using LS), 
subject to sufficient length constraint. However, if the training 
sequence is known only partially, a closed form analytical solu- 
tion is not possible. For that reason we develop a method based 
on statistical simulation. The method delivers estimates of the 
channel transfer functions as well as estimates of the additive 
Gaussian noise variance. This work can be viewed as extension 
of time-only Gibbs method presented in [31 to MIMO systems. 

I I .  MODEL DESCRIPTION AND AIMS 

We consider the multiple source digital signalling problem 
over time dispersive channels. The binary stream of data { d l }  
is first transformed by a channel encoder to obtain { b t }  - the en- 
coded (redundant) sequence. vpically convolutional or LDFC 
(Low Density Patiry Check) coding schemes are used for that 
purpose. The encoded sequence is then permuted { l ~ ~ ( ~ ) }  and 
mapped to a sequence of digital modulation symbols {st}. To 
improve the spectral efficiency, the modulated sequence is di- 
vided into parallel streams that are transmitted simultaneously 
from M transmit antennas (sources). 

A. The equivalent channel 
The signal is transmitted through a medium, introducing both 

noise, delays and attenuations. We consider here a model for 
the combination of the transmission channel and the pulse s h a p  
ing. The mixing model is assumed to be a multidimensional 
time invariant FIR filter. More precisely we assume that the 
sources are mixed in the following manner, and corrupted by 
an additive Gaussian i.i.d. noise sequence: at the j t h  sensor, 
and for j = 1,. . . , m (no constraint between m and n) 

m 

d = Ch:,js::,-,+l + n: 
i=l 

where L is the length of the filters from sources to sensors, as- 
sumed to be independent of i, j and time invariant. The series 
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{ d} is a circular zero mean i.i.d. complex Gaussian sequence, where 
i.e. f o r j  = 1,. . . , m and t = 1,. . . , E-' = sts+i,' 

d "Ld' N, (0, u2/2) .  (3) p = C(Sty+C;lpo)  
This can be reformulated in matrix form as (we stack the P = I - S C S I  

observations y: in yt), 
Consequently the joint posterior distribution can be rewritten as 

yt = Sth t qt 

and for T observed vectors, we will have 

y = S h + q  (4) 
It is important to emphasise the structure of (4). This is a 

rather unusual formulation of this problem, since it implies that 
it is "data that acts on channels" to produce observation. 

In what follows we assume that h, uz and possibly ~(11;~) are 
unknown, and it is of interest to estimate h, u2 (and $;' as a 
by-product) from the observations y l : ~ .  

B. Bayesian model and prior distributions 
We adopt here a Bayesian approach, whereby any prior 

knowledge concerning the quantities of interest can be incorpo- 
rated in the inference process through prior distributions. Here 
we chose the following conjugate prior distributions 

h - Nc(~oI~2Co) 
which can be made non-informative by taking E,' = 0, uo i< 
1 and 70 = 0. Other priors are also possible, and would not 
change the algorithms presented later. Now, applying Bayes' 
rule we can write the joint posterior distribution as 

U* - X ( U O , 7 0 )  

P (h,uZ,s$lrm)IY1:T) c( 

1 -1 

x p  (Sy;") 

111. ESTIMATION OBJECTIVES AND COMPUTATIONAL 
ISSUES 

The receiver is built around the classical turbo concatena- 
tion with an innovation of a modified Gibbs sampler. The 
Gibbs sampler and the channel decoder exchange so-called 
extrinsic information. The extrinsic information is the in- 
cremental knowledge gleaned from the decoding process i.e. 
p (bluz,b!~i),yl:T) where b!yi) means bilk!)  less b;). The 
interleaved extrinsic information produced by the channel de- 
coder serves as the prior distribution for the Gibbs sampler. 
The Gibbs sampler produces then a set of margina1,posterior 
distributions for the modulation symbols. The marginal sym- 
bol posterior distributions are then transformed into marginal 
bit posterior distributions that are passed over to the channel 
decoder after the prior information has'been removed and the 
distributions interleaved. 

A. Estimation purposes 

The turbo decoder requires the evaluation of the family of 

1 
x - e x p  (G (h  - p ~ ) ~  C,' (h  - po) 

l+Eol U 

77 1 mT posterior marginal distributions of the symbols given the 
observations, in other words p for t = 1,. . , , T and 
j = 1, . . . , m. Whereas it is relatively easy to evaluation the 
ioint wsterior distribution of the channels . the variance of the 

X-- 

. .  
,,,hexp ($;m)) is the prior distribution of the symbols, which observation noise and the symbols, as it is a simple by-product 

of the application of Bayes' rnle, it is much more difficult in contains the information related to the expected type of data 
practice to estimate the marginal posterior distributions of the transmitted, but also the structure of the code used for the trans- 
symbols. Indeed, for any t = 1,. . . , T and j = 1, . . . , m, the mission. We simplify this expression by considering the terms 
marginal posterior distribution is equal to in the exponentials: 

y'y + (Sh)' (Sh) - 2Re (y t sh )  + h k i ' h  

+p$;'po - 2Re p&'h + Y O  = 

ht (StS+ E;') h - 2Re (hi (Sty + Cg'po))  + 
Y Y+PoEo P O f Y O =  

( h - p ) ' C - ' ( h - p )  + ~ o + p ~ C ~ ~ p o + y ' P y  

To give an idea about the complexity involved with the evd- 
nation of this quantity we consider a simple scenario. Let the 
modulation be a BPSK, T = 100, m = n = 2 (i.e. two sources 

t t -1 and two antennas). In this simple case the number of discrete 
terms in the sum is ZZxg9, i.e. a number of terms of order 
Therefore, even in the case where the integrals over h a n d 2  

0 
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.can be exactly evaluated or reasonably approximated, system- 
atic evaluation of the discrete sum is impossible, and one has to 
resort to numerical approximations in order to beat the curse of 
dimensionality. 

B. The Monte Carlo merhod 

Monte Carlo methods have proved to be very efficient at tack- 
ling such complex problems. They have been successfully ap- 
plied in physics for 50 years [4], image processing for nearly 20 
years [5] and statistics for over a decade where they have rev- 
olutionised Bayesian statistics. The basic principle of Monte 
Carlo methods consists of replacing the algebraic representa- 
tion of R by a population based representation [I] .  More pre- 
cisely assume that we know how to produce N samples, the 
population, distributed according to R, then the probability of 
any region A of X, i.e. J, R (5)  d x ,  can be approximated by 
the number of samples that belong to A. Now if we wish to 
approximate an integral of the form 

(where here 
Monte Carlo estimator of I (f) is given by 

either means discrete or continuous sum), then a 

l N  

N i=l 
= - Cf (.a,. 

Intuitively this estimator ought to be efficient, as the sam- 
ples {z,] tend to concentrate on regions of high probability 
(i.e. where information is) and avoid regions of low probahil- 
ity, therefore making the most of the available computational 
power. This statement can he made mathematically rigourous, 
and it can be proved that under fairly general conditions, the 
rate of convergence of this estimator to the m e  value of the in- 
tegrd~is of the order 0 (*), that is the rate of convergence is 
independent of the dimension of X 

C. MCMC methods 
Sampling from such a distribution can be difficult in prac- 

tice, however Markov chain Monte Carlo (MCMC) techniques 
have proved to be able to sample from potentially any type of 
posterior distribution. Their principle is the following: instead 
of producing independent and identically distributed (from R) 
samples, it is generally easier to build a Markov chain whose 
invariant distribution is R, that is generate a series of samples 
that are correlated. Indeed, such Markovian schemes allows for 
"divide to conquer" techniques as partial update of the samples 
is possible. This is the approach that we follow here and to he 
precise we use a Gihbs sampler. The Gihbs sampler relies on 
the idea that although it might be difficult to sample from the 
joint posterior distribution p h, uz, S$1$)IYl:T) , it might be 
easier to sample from a subset of its conditional posterior dis- 
trihuti0nse.g. p h lo2 ,s$1k!) ,y~:~  

p (sfIh,uZ,s!<"),y1:T) where s!;~) means SI!;!) less SF) ... 
Intuitively it is likely that it will be easier to update some suh- 
blocks of the parameters (with the remaining parameters fixed) 
rather than the complete vector of parameters. 

( 
( 

Iv. PROPOSED ALGORITHM 

Implementation of the Gibhs sampler for our problem would 
be (ai below means the ith sample corresponding to parameter 
a at iteration i): 

In the first iteration the unknown symbols are sampled from 
prior distributions. Since typically, we have no knowledge of 
these statistics, we initiate the symbols using uniform distrihu- 
tions. Once samples for the channels are generated, the noise 
variance is updated. With both samples of channels and noise 
variance updated, the remaining (un-known) symbols can be 
updated. In this part of the algorithm a number of schemes 
are possible. The simplest is to sequentially update all symbols 
"one at a time". In more elaborate versions, one can sample 
blocks of symbols at a time. We chose to use "one at a time" 
up-date with random order, which is different for each iteration. 
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Fig. I .  Channel estimate convergence (semi-blind case): 2 Tx by 2 Fa, L = 3 
tap channel (all i.i.d) N (0, (2L)- ' )  8 symbol training sequence. 

V. SIMULATIONS 

Figures I and 2 present an insight into properties of the pro- 
posed method. In both cases it is a 2Tx x 2Rx space time 
system. All channel taps (k3) are modelled as Gaussian 
N (0, (ZL)-'), the S N R  = 10 dB per receive antenna. A short 
training sequence of 8 symbols is used to encourage the algo- 
rithm to find a '*correct mode" of the posterior distribution. As 
can he seen in both cases the algorithm converges to acceptable 
levels of MSE very rapidly. 

VI. CONCLUSIONS 
In this paper we present advanced Monte Carlo simulation 

techniques in order to solve the problem of wide-band MIMO 
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Fig. 2. Convergence of the noise variance estimate (semi-blind case): 2 Tx by 
2 Rx. L = 3 tap channel (all i.i.d) N (0, (ZL)-') 8 symbol training sequence. 

channel identification. The algorithm relies on a Gibbs sampler 
procedure. Simulation confirm that OUT approach is sound. 
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