385 research outputs found

    X-ray emission from a crystal undulator—Experimental results at channeling of electrons

    Get PDF
    Experiments have been performed at the Mainz Microtron MAMI to explore the radiation emission from a 4-period epitaxially grown strained layer Si1−xGex undulator with a period length λu = 9.9 μm. Electron energies of 270 and 855MeV have been chosen. In comparison with a flat silicon reference crystal, a broad excess yield around the theoretically expected photon energies of 0.069 and 0.637 MeV, respectively, has been observed for channeling at the undulating (110) planes. The results are discussed within the framework of the classical undulator theory

    A CTMC study of collisions between protons and H2+H_2^+ molecular ions

    Full text link
    We study numerically collisions between protons and H2+H_2^+ molecular ions at intermediate impact energies by using the Classical Trajectory Monte Carlo method (CTMC). Total and differential cross sections are computed. The results are compared with: a) the standard one electron--two nucleon scattering, and b) the quantum mechanical treatment of the H+−H2+ H^{+} - H^{+}_{2} scattering.Comment: ReVTeX, 5 pages + 5 figs. (EPS) To be published in Physica Script

    Future aspects of X-ray emission from crystal undulators at channeling of positrons

    Get PDF
    In connection with ideas to produce undulator-like radiation in the hundreds of keV up to the MeV region by means of positron and electron channeling, there is renewed interest to study various channeling phenomena also experimentally. With electrons experiments have been performed at the Mainz Microtron MAMI to explore channeling-radiation emission by a 4-period epitaxially grown strained layer Si1−xGex undulator with a period length of λu = 9.9 μm. Unfortunately, high-quality positron beams of sufficient intensity are not easily accessible. The only serious candidate in Europe seems to be the Beam Test Facility (BTF) at INFN/LNF, Frascati, Italy. Some requirements to extent BTF in a facility which is also well suited for positron channeling-radiation experiments will be outlined

    Self-Diffusion in Amorphous Silicon by Local Bond Rearrangements

    Get PDF
    Experiments on self-diffusion in amorphous silicon (Si) were performed at temperatures between 460 to 600 degrees C. The amorphous structure was prepared by Si ion implantation of single crystalline Si isotope multilayers epitaxially grown on a silicon-on-insulator wafer. The Si isotope profiles before and after annealing were determined by means of secondary ion mass spectrometry. Isothermal diffusion experiments reveal that structural relaxation does not cause any significant intermixing of the isotope interfaces whereas self-diffusion is significant before the structure recrystallizes. The temperature dependence of selfdiffusion is described by an Arrhenius law with an activation enthalpy Q = (2.70 +/- 0.11) eV and preexponential factor D-0 = (5.5(-37)(+11.1) x 10(-2) cm(2) s(-1)). Remarkably, Q equals the activation enthalpy of hydrogen diffusion in amorphous Si, the migration of bond defects determining boron diffusion, and the activation enthalpy of solid phase epitaxial recrystallization reported in the literature. This close agreement provides strong evidence that self-diffusion is mediated by local bond rearrangements rather than by the migration of extended defects as suggested by Strau beta et al. (Phys. Rev. Lett. 116, 025901 (2016))
    • …
    corecore