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A Modified TSD Specimen for Fracture
Toughness Characterization � Fracture

Mechanics Analysis and Design

CHRISTIAN BERGGREEN*
Department of Mechanical Engineering, Technical University of Denmark

Nils Koppels Allé, Building 403, DK-2800 Kgs. Lyngby, Denmark

LEIF A. CARLSSON

Department of Mechanical Engineering, Florida Atlantic University, 777 Glades Road

Boca Raton, FL 33431, USA

ABSTRACT: The tilted sandwich debond (TSD) specimen has been recognized as a
viable candidate for characterization of the face/core fracture resistance. Analysis,
however, shows that the range of phase angles that can be realized by altering the tilt
angle and other parameters of the test is quite limited. A method to extend the range
of mode-mixities of the TSD specimen is to introduce a larger amount of transverse
shear by reinforcing the loaded upper face with a stiff metal plate. Analysis
shows that this method extends the range of phase angles to a practically useful
range. Guidelines on selection of thicknesses of the reinforcement, and design
considerations for further modifications are provided.

KEY WORDS: sandwich structures, fracture mechanics, interfaces, mixed mode
loading.

INTRODUCTION

T
HE TILTED SANDWICH debond (TSD) specimen, shown in Figure 1, was introduced as
a debond test for foam cored sandwich specimens in 1999 by Li and Carlsson [1]. The

specimen is tilted which means that the debonded face will be subject to an axial load, PA,
as in Figure 1, in addition to the normal load, PN (PA¼Psin �, PN¼Pcos �). The axial
load was initially thought to promote a negative shear stress at the crack tip that would
mitigate the shear stress due to the bimaterial interface and counter the tendency for the
crack to kink down into the core (Figure 2). Testing of foam cored sandwich specimens,
however, showed that the crack initially kinked down into the core (although the crack
returned to the upper face/core interface as the crack propagated further) [1].
Experimental tests on sandwich specimens with a certain combination of face and core
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Figure 19 appears in color online: http://jcm.sagepub.com
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materials have been conducted at different tilt angles, but the results reveal that the frac-
ture resistance curves (R-curves) are very similar. Subsequent analysis [2] confirmed that
the mode-mixity for a typical TSD specimen remains quite unaffected by the tilt angle.

It is generally recognized that the fracture toughness for propagation of an interface
crack between two dissimilar materials depends on the mode-mixity often expressed as a
‘phase angle’, w, where w quantifies the amount of mode II dominated loading of the crack
and the direction of shear. It should be pointed out that positive shear stress ahead of the
crack tip, w> 0, see Figure 2, tends to promote kinking of the crack into the core [3,4].
Conversely, zero or a negative shear stress, w< 0, will generally promote interface growth,
although cases have been reported where negative shear leads to crack kinking into the
face sheet [5,6]. The face sheets in the specimens examined by Berggreen et al. [5] and
Lundsgaard-Larsen et al. [6] were composite laminates. Kinking into the face sheet is not
physically possible for metal faces.

Interface crack Kinked crack

Kinked crack

Ω = Kink angle

Ω

t > 0

Figure 2. Illustration of crack kinking into the core under positive shear at the crack tip.

TSD test

q=Tilt angle

Rigid base

PA

P

a

PN

P

q

Figure 1. Schematic representation of the conventional TSD specimen.
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A full characterization of debond failure thus requires testing over a wide range of
mode-mixities. Only a limited number of test fixtures incorporates the possibility for a

direct specification of the mode-mixity applied during the test. A very intriguing test

method is the double cantilever beam test with uneven bending moments (DCB-UBM),
devised by Sørensen et al. [7] for monolithic composites where the ends of a DCB specimen

are loaded by moments. The directions of the moments and their relative magnitudes can

be varied, allowing for a large range of mode-mixities. This test was applied on sandwich

specimens by Østergaard et al. [8] and Lundsgaard-Larsen et al. [9]. This method produces
stable crack growth if run under displacement control since the crack loading does not

change with crack length, making the DCB-UBM specimen highly attractive for measure-

ment of interface cohesive laws, where a stable crack growth is required in order to reach a

fully developed process zone behind the crack tip. Unfortunately, the test method requires
a quite complicated test rig and tall test frame and for sandwich specimens also ultra-high

strength steel reinforcements of the face sheets. Thus, it may not be easily applied.
Recently the classic mixed mode bending (MMB) test [10,11] developed for delamina-

tion testing of monolithic composite specimens was modified to also incorporate sandwich
specimens [12,13]. Although the sandwich MMB test fixture is much less complicated to

prepare and use than the DCB-UBM and the specimen does not need to be reinforced, the

range of mode-mixities possible for one specimen geometry, through the adjustment of the

lever arm distance in the fixture, is more limited.
The characterization of delaminations in composite laminates and debonds in layered

materials typically utilizes layered beam specimens with a pre-crack at the interface.

Analysis of such specimens has traditionally been focused on a combination of axial

loads and pure moments acting on cross sections away from the crack tip region. For
shorter crack lengths, however, transverse shear is known to affect the energy release rate

of such specimens, and analysis by Li et al. [14] and Ferrie et al. [15] reveals that shear will

also change the phase angle, w. The shear force will cause rotation of the region close to

the crack tip, ‘root rotation’, in excess of the rotation due to the average transverse shear
strain.

For the TSD geometry, it seems plausible that a way to enhance the shear loading is to

use a thicker face or a steel plate reinforced face. From a practical point of view it is

difficult to increase the face thickness just for testing purposes. The most viable option to
increase the shear force is to adhesively bond a steel bar to the upper face.

In this article, the reinforced TSD specimen will be examined using detailed finite ele-

ment analysis. Further modifications are also examined.

SOLUTIONS FOR INTERFACE CRACKS

Linear-elastic fracture mechanics for debonding of layered materials has been consid-

ered by several authors, see the extensive review provided by Hutchinson and Suo [16]. A

‘TSD like’ specimen was considered, see Figure 3. The configuration shown in Figure 3 is

representative for a long TSD specimen with a very thick core and a thin face sheet subject
to an axial edge load and edge moment1 at long crack lengths. The solution for the stress

1The shear loading due to the transverse load component at the edge is neglected here, and its action is replaced
by the moment, M.
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intensity factors for this specific geometry and loading may be extracted from the general

analysis of beam-like specimens presented by Hutchinson and Suo [16].

K1 þ iK2 ¼ h�i"f

1� �

1� �2

� �1=2
1ffiffiffi
2
p Fh�1=2f � i2

ffiffiffi
3
p

Mh�3=2f

� �
ei!, ð1Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

, K1 and K2 are ‘components’ of the complex stress intensity factor, and hf is

the face sheet thickness. F and M are edge force and moment acting on the debonded face

sheet, respectively. e is the oscillatory index given for isotropic materials by:

" ¼
1

2�
ln

1� �

1þ �

� �
, ð2Þ

where � is a bimaterial interface constant (Dundurs parameter [17]) given by:

� ¼
1

2

G1ð1� 2v2Þ � G2ð1� 2v1Þ

G1ð1� v2Þ þ G2ð1� v1Þ
, ð3Þ

where Gi (i¼ 1,2) represents the shear moduli of materials 1 and 2 above and below the

interface, Figure 4. The parameter � is given by:

� ¼
�E1 � �E2

�E1 þ �E2

, ð4Þ

y

1

2

x

Interface

Original position

r

d1

d2

Figure 4. Crack flack displacements. Open circle: point on the crack faces before loading. Filled circles:
Position of point after loading.

h

M

F 1

2

Figure 3. Face sheet (1) subject to edge loads supported by an infinite core (2).
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where �E ¼ E and E=ð1� �2Þ for plane stress and plane strain, respectively, and where E

and m are Young’s modulus and Poisson’s ratio, respectively. The parameters � and � are

called ‘mismatch’ parameters after their derivation by Dundurs [17]. Hence, if both mate-

rials across the interface are the same, there is no mismatch and � ¼ � ¼ 0.
The parameter x in Equation (1), is a phase angle that depends on the

bimaterial parameters � and �, and assumes a value of 52.1� for a homogeneous isotropic

specimen [16].
For the purpose of determining stress intensity factors based on finite element analysis,

it is desirable to utilize displacements of the crack surfaces behind the crack tip. Figure 4

illustrates schematically how a point on the crack faces, originally at a distance, r, behind

the tip, displaces upon loading, with opening (�1) and sliding (�2) displacements. The

definitions of �1, and �2 shown in Figure 4 are consistent with positive opening and

shear stresses, ry and �xy, in front of the crack tip. Hutchinson and Suo [16] provide the

following expression for the displacements:

�2 þ i�1 ¼
8ðK1 þ K2Þð1� �

2Þ
1=2

ð1þ 2i"ÞE �
r

2�

� �
ri": ð5Þ

The energy release rate available for interface crack growth is [16]:

G ¼
ð1� �2Þ

E �
K2

1 þ K2
2

� �
, ð6Þ

where

1

E �
¼

1

2

1

E1
þ

1

E2

� �
: ð7Þ

Expressions for the crack-tip stress field are given by Hutchinson and Suo [16].
It is widely recognized that in most cases the stress oscillation and contact occur in an

extremely narrow region behind the crack tip. Further, it is common practice to suppress

the oscillating singularity by letting �¼ �¼ 0 in the expression (1) for the stress intensity

factors. With �¼ �¼ 0, K1 and K2 mathematically retain their conventional meaning as

measures of the intensities of the tensile and shear stress fields ahead of the crack tip, that

is, K¼KI+i KII. In this article the TSD specimen will be examined using both complex

and conventional stress intensity factors, and from here on designated as the ‘full’ and

‘reduced’ formulation indicated by ‘F’ and ‘R’, respectively. For the reduced formulation

(e¼ 0), the displacements, �1 and �2, Equation (5) become:

�2 þ i�1 ¼
8

E �
ðK1 þ iKIIÞ

r

2�

� �
: ð8Þ

Furthermore, the expressions for phase angle, w, for the e 6¼ 0 and e¼ 0 definitions

become,

 F ¼ tan�1
Im Kli"
	 


Re Kli"½ �

� �
, ð9aÞ

 R ¼ tan�1
KII

KI

� �
, ð9bÞ
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where l in Equation (9a) is defined as the characteristic length of the crack problem. For
sandwich debond problems the characteristic length is often arbitrarily chosen as the face
thickness. The selection of the length l will be discussed further later.

TSD Analysis

By neglecting the effects of shear on the crack tip stress and displacement field, it is
possible to model the TSD specimen, Figure 1, using Equation (1) with:

F ¼ �P sin �, ð10aÞ

M ¼ Pa cos �, ð10bÞ

where P is the vertical force and � is the tilt angle, see Figure 1. For the reduced formu-
lation (e¼ �¼ 0), and ei! ¼ cos!þ i sin!, Equations (1) and (10) yield,

KI ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� a

2hf

s
� sin � cos!þ 2

ffiffiffi
3
p a

hf

� �
cos � sin!

� �
P, ð11aÞ

KII ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� a

2hf

s
� sin � sin!� 2

ffiffiffi
3
p a

hf

� �
cos � cos!

� �
P: ð11bÞ

For a TSD specimen with a thin face sheet and a long crack it is noted from Equations
(11) that the second terms in the expressions for KI and KII will dominate. Hence, the
phase angle, wR, will become independent of crack length, face sheet thickness and tilt
angle,

 R ¼ tan�1
KII

KI

� �
¼ � tan�1 cot!ð Þ ¼ !� 90�: ð12Þ

Furthermore, for a homogeneous TSD specimen, x¼ 52.1� [16]. Hence, for this case the
phase angle becomes: wR¼�37.9

�. For bimaterial specimens, Hutchinson and Suo [16] pro-
vides results for the angle x in graphical form over the range (�0.8��� 0.8). Unfortunately,
this range does not include typical sandwich material configurations where the mismatch in
material properties across the face/core interface is extreme (�� 1). From the analysis in
Hutchinson and Suo [16] it can be noted that x is increasing when � is increasing (larger
bimaterial mismatch), which will produce a more mode I dominated crack loading. For
shorter crack lengths, however, it is not appropriate to replace the edge moment, M, in
Equation (1) with the ‘statically equivalent’ normal force component (P cos �) times the
crack length (a) as in Equation (10b), because the transverse shear force becomes more sig-
nificant [14]. This will here be examined using finite element analysis.

PARAMETRIC FRACTURE ANALYSIS

A potential method to increase the range of mode-mixities is to reinforce the upper face
with a steel bar, see Figure 5. The effect of stiffening of the loaded face sheet on the phase
angle is investigated using detailed finite element analysis. The parameters that will be
varied are the reinforcement thickness, hs, and the tilt angle, �. The basic sandwich geom-
etry investigated consists of 2mm face sheets made from E-glass woven rovings and epoxy
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resin and 25mm thick Divinycell H45, H100, and H200 foam cores. The (steel) reinforce-
ment is considered adhesively bonded to the upper face sheet. Furthermore, in order to
enhance the effect of the transverse shear a short crack length (25mm) relative to the
specimen length (200mm) is chosen. Geometrical and mechanical properties considered in
the parametric analysis can be found in Tables 1 and 2.

In order to determine fracture mechanical properties, that is, energy release rate and
phase angle, for the various configurations of the modified TSD specimen, the crack
surface displacement extrapolation (CSDE) method based on relative crack flank displa-
cements was applied combined with a calculation of the J-integral. The CSDE-method was
presented earlier by Berggreen et al. [5] in combination with a 2D finite element model
similar to the one used herein. Expressions for the energy release rate and phase angle can
also be found in Berggreen et al. [5].

The finite element model consists of 4- and 8-noded iso-parametric plane elements. In
order to accurately capture the relative crack flank displacements near the tip, see Figure 4,
a highly densified mesh was used in the region surrounding the crack tip. Furthermore, the
dense mesh region is divided into element rings and used for several J-integral calculations
which are then averaged and compared with the energy release rate determined from the

Face
reinforcement

L

P

a

Rigid base

q

hs

hfhc

hf

Figure 5. Schematic representation of the reinforced TSD specimen.

Table 1. Geometrical properties in the parametric analysis.

Geometrical properties

Specimen length (mm) L 200
Face thickness (mm) hf 2, 4
Core thickness (mm) hc 5, 10, 25, 50, 100
Crack length (mm) a 25, 50
Reinforcement thicknesses (mm) hs 1, 2, 4, 8, 12
Tilt angle (�) � �85, �75, �60, �30, 0, 30, 60, 75, 85
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relative crack flank displacements and using the CSDE-method. The finite element mesh is

shown in Figure 6.
The TSD simulation is conducted by restricting all DOF’s at the bottom surface of the

lower face sheet. Axial, PA, and normal, PN, loads are applied at the upper left corner of

the reinforcement layer according to the tilt angle, �,

PA ¼ P sin �, ð13aÞ

PN ¼ P cos �: ð13bÞ

The finite element analysis is geometrically linear. For each specimen configuration,

the load is applied corresponding to an energy release rate level G¼GIC of the foam

core. GIC for the H45, H100, and H200 foams are about 200, 400, and 800 J/m2 [18].
Figure 7 shows the phase angle for the TSD specimens with H45, H100, and H200 cores

calculated according to the reduced formulation (e¼ 0) as a function of the tilt angle for

Table 2. Mechanical properties of face, core, and steel.

Mechanical properties

Face (GFRP, CFRP) Cores (H45, H100, H200)

In-plane Young’s moduli
(GPa)

E1,
E2

20.6
44.0

Young’s modulus
(MPa)

Ec 55
130
250

Out-of-plane Young’s modulus
(GPa)

E3 9.90
9.90

Shear modulus
(MPa)

Gc 15
35
85

In-plane shear modulus
(GPa)

G12 3.10
6.62

Poisson’s ratio
(�)

mc 0.32
0.32
0.32

Out-of-plane shear moduli
(GPa)

G13,
G23

2.90
6.20

Steel reinforcement

In-plane Poisson’s ratios
(�)

m12 0.12
0.12

Young’s modulus
(GPa)

Es 210

Out-of-plance Poission’s ratios
(�)

m13,
m23

0.37
0.37

Poission’s ratio
(�)

ms 0.3

Figure 6. Finite element mesh applied in parametric analysis of the reinforced TSD specimen (hr¼ 12 mm).
(a) global mesh and (b) near tip mesh region. Minimum element size is 3.33	m.
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various reinforcement thicknesses. For the unreinforced (hs¼ 0) original TSD specimen
with a given core the phase angle is almost constant over the range of tilt angles between
{�75�<�< 75�}, confirming the earlier analyses and testing by Li and Carlsson [2].
However, Figure 7 shows also that by reinforcing the upper face sheet with a stiff steel
layer the range of phase angles is expanded. For a H100 core and a reinforcement thick-
ness of 12mm (Figure 7(b)), the phase angle assumes values between wR¼�70

� over the
range of tilt angles, �, from �85� to 85�. The results for the specimens with H45 and H200
cores are similar, see Figure 7(a) and (c).

As indicated earlier, the increased range of phase angles can be associated with the
increased shear loading and crack tip root rotation when the reinforcement layer thickness,
hs, is increased. Deformed crack tip meshes for a TSD specimen with a H100 core without
and with 12mm steel reinforcement are shown in Figure 8 (�¼ 75�). Significant root
rotation is clearly observed for the reinforced TSD-specimen in accordance with the

–80
–80

–60

–60

–40

–40

–20

–20

0

0

20

20

40

60

80

40 60 80
q (deg)

y
R

 (
de

g)
y

R
 (

de
g)

y
R

 (
de

g)

hs=0mm
hs =1mm

hs =2mm
hs =4mm
hs =8mm
hs =12mm

TSD
Steel reinforcement
H45 a  = 25mm, hc = 25mm

–80
–80

–60

–60

–40

–40

–20

–20

0

0

0

20

20

40

60

80

40 60 80
q (deg)

–80
–80

–60

–60

–40

–40

–20

–20

0 20

20

40

60

80

40 60 80
q (deg)

TSD
Steel reinforcement
H100 a  = 25mm, hc = 25mm

TSD
Steel reinforcement
H200 a  = 25mm, hc = 25mm

hs=0mm
hs =1mm
hs =2mm
hs =4mm
hs =8mm
hs =12mm

hs=0mm
hs =1mm
hs =2mm
hs =4mm
hs =8mm
hs =12mm

(a)
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Figure 7. Phase angle (reduced formulation) as function of tilt angle for a reinforced TSD specimen. (a) H45,
(b) H100, and (c) H200 core cases.
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analysis of Li et al. [14]. The phase angles for the unreinforced and reinforced specimens
are: wR¼ 8.89� and wR¼�29.12

�. The crack tip rotation apparently contributes to the
increasing amount of negative mode-mixity.

Further inspection of the results in Figure 7 reveals that unreinforced TSD specimens
display positive phase angles for tilt angles up to around �¼ 80� for all core materials,
indicating that crack kinking into the core is likely. It was mentioned earlier that a TSD
specimen made from a single material loaded at zero tilt angle (�¼ 0) has a negative phase
angle (wR¼�38

�). It was also pointed out that the bimaterial character of the specimen
will shift the mode-mixity towards mode I. For the sandwich configuration considered
here, the mismatch is extreme (�� 1.0) and the phase angles are indeed shifted towards
mode I dominance, in agreement with the trends predicted from simplified, earlier dis-
cussed analysis of the TSD specimen. As shown in Figure 7, a way to counteract this
tendency is to reinforce the face sheet. Relatively thick reinforcements (hs¼ 8 and 12mm)
are most effective.

Both unreinforced and reinforced TSD specimens are prone to kinking at negative and
small positive tilt angles according to Figure 7. So far the discussion of kinking is based on
the reduced formulation, Equation (9b). This approach suppresses the oscillations by the
e¼ 0 assumption. Application of the full formulation, Equation (9a), requires selection of
a length scale, l, often chosen as the face thickness, hf, in sandwich debond analysis [5].
Figure 9 shows the phase angle for the original TSD specimen (hs¼ 0) and a steel bar
reinforced TSD specimen (hs¼ 12mm) (both with a H100 core) calculated using the full
(l¼ 2mm¼ hf) and reduced formulations. It is observed that application of the full for-
mulation (l¼ 2mm) will shift the phase angle towards negative mode-mixities by about
25�30� depending on the tilt angle. The choice of the length scale must be consistent with
experimental observations. One measure sensitive to the near-tip stress state is the angle at
which a face/core crack would propagate, that is, the kinking angle. This suggests that

Figure 8. Crack tip deformations at �¼75� for a specimen with a H100 core. (a) Original TSD specimen and
(b) reinforced TSD specimen, (hs¼ 12 mm).
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experiments be conducted on TSD specimens where a failure mode transition occurs from
face/core interface failure to crack kinking. Thus, in order to determine the length scale, l,
in Equation (9a), l could be calibrated so that kinking sets in at a phase angle of wF¼ 0�.
This will be the subject of a later paper.

In order to investigate the response and mechanical behavior of the modified
TSD-specimen when changing the crack length, and face and core stiffnesses and thick-
nesses, parametric analyses have been carried out as presented below.

Effect of Crack Length

Figure 10 shows the phase angle (reduced formulation) as function of tilt angle for a
steel reinforced (hs¼ 12mm) GFRP/H100 TSD specimen with 2mm thick face sheets and
25mm thick H100 core for crack lengths of 25�150mm. As the crack length increases the
relative shear contribution diminishes. As a consequence, the crack loading becomes more
mode I dominated at longer crack lengths. This is in qualitative agreement with the results
of Li and Thouless [14] who found a strong effect of crack length on their phase angle
results.

Effect of Face Sheet Thickness and Material

TSD specimens with GFRP face sheets of thicknesses of 2 and 4mm and a H100 core
were considered (a¼ 25mm). The steel reinforcement was 12mm in both cases. Figure 11
shows the phase angle as a function of tilt angle for TSD specimens with the two face
thicknesses. It can be observed that the face thickness has a small influence on the phase
angle. This is expected since the 12mm thick steel reinforcement will dominate the
response of the specimen. Thus, it can be concluded that for the TSD specimen reinforced
with a thick steel reinforcement, precise determination of face sheet thicknesses is not
important.
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The influence of face material on the phase angle is investigated for a TSD specimen
with a 12mm thick steel reinforcement and H100 core. The crack length was 25mm and
the face and core thicknesses were 2 and 25mm, respectively. Typical material properties
for GFRP and CFRP face sheets, see Table 2, were assumed. Results shown in Figure 12
verify that the face modulus has virtually no influence on the phase angle. It can be
concluded as well that a precise measurement of the face sheet stiffness is not necessary
for the modified TSD-specimen.

Figure 13 shows the influence of tilt angle on the applied load required to achieve
G¼GIC for a specimen with (hs¼ 12mm) with a H100 core with a 25mm crack, 2mm
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Figure 10. Phase angle (reduced formulation) vs. tilt angle for reinforced (hs¼ 12 mm) GFRP/H100 TSD
specimens with 2 mm face and 25 mm core thickness and a range of crack lengths, a¼ 25�150 mm.
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specimen with 25 mm crack length, 25 mm core thickness and face thicknesses of 2 and 4 mm.
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thick face and 25mm thick core. Both CFRP and GFRP faces (properties listed in Table 2)
were examined. It can be observed that the applied load is increasing rapidly at larger tilt
angles (and thus phase angles), as a result of the reduced contribution of mode I to the
crack driving force and specimen compliance. Again it can be concluded from the results
that the face sheet stiffness has no effect on the load level. However, regarding design of a
suitable test setup, it is important to notice the increased load level for high tilt angles.
Furthermore, the load levels presented in Figure 13 are given for a constant energy release
rate of 400 J/m2, typically measured as fracture toughness under mode I dominance. Thus,
in actual testing considerably higher load levels can be expected for mode II dominated
loading configurations based on earlier reported fracture toughness measurements in the
literature [e.g., 5, 8, 13].

Effect of Core Thickness and Material

H100 core thicknesses in the range from 5 to 100mm were examined. The steel rein-
forcement was 12mm thick, the GFRP faces 2mm thick and the crack length 25mm.
Figure 14 shows that reduced core thickness will reduce the phase angle at a given tilt
angle. A reduced core thickness will promote localized shear deformation at the crack tip,
thus resulting in more crack tip rotation.

The influence of core density on the phase angle (reduced formulation) was examined
for a TSD specimen with a 12mm steel reinforcement. The face and core thicknesses were
2 and 25mm, and the crack length 25mm. Furthermore, Dundur’s parameter [17], �, given
for isotropic materials in Equation (4) and for orthotropic materials in [19], for the three
material configurations with GFRP faces and, respectively, H45, H100, and H200 cores
was calculated to 0.993, 0.983, and 0.968. Figure 15 shows that the core density has small
influence on the phase angle, which is in accordance with the small variation in � for the
three material configurations. This indicates that geometry effects such as crack length
dominate the variation in mode-mixity over core material choice for the investigated core
material type and densities.
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Figure 16 shows the influence of core density on the load required to achieve G¼GIC.
The required load increases substantially with increasing core density, and magnitude of
phase angle.

FURTHER DESIGN MODIFICATIONS

As shown earlier, see Figures 7 and 14, the thicknesses of the steel reinforcement and the
core largely influence the phase angle. It was shown that a small core thickness promoted
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Figure 13. Load required to achieve G¼GIc as function of tilt angle for a reinforced (hs¼ 12 mm) H100 TSD
specimen with 25 mm crack length, 2 mm face and 25 mm core thickness.
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crack tip rotation and negative mode-mixity at large tilt angles. Global shear deformation
of the core, at large tilt angles could also be reduced if the left edge of the TSD specimen is
reinforced. To examine the influence of such a reinforcement, the action of such a rein-
forcement was simulated by fixing all DOF’s of all nodes on the left edge of the specimen.
Figure 17 shows phase angle vs. tilt angle for TSD specimens with a 25mm thick H100
core and 2mm thick face sheets with a 12mm steel reinforcement at a crack length of
25mm with and without such an end reinforcement. For larger tilt angles {20�<�< 85�}
the end reinforcement reduces the phase angle, apparently as a result of more localized
shear deformation at the crack tip. Furthermore, Figure 18 shows contrary to the results
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for the TSD specimen without the left end block reinforcement (Figure 14), that the rela-
tion between phase angle and tilt angle assumes close to a unique relation, independent of
core thickness for larger core thicknesses. This indicates that the left block channels shear
deformation to the crack tip region and causes crack tip rotation. For core thicknesses less
that 10mm, however, the phase angle vs. tilt angle relationship departs from the unique
relation. It is believed that this behavior is due to the influence of the lower face sheet on
the local crack tip deformation field.
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It has been demonstrated that the end reinforcement of the left core edge could be a
viable method to promote localized crack tip shear deformation. Such a method might be

practically implemented by adhesively bonding or bolting a metal block to the base of the

TSD fixture.
In the parametric analysis described above, the possibility for local failure of the

TSD-specimen reinforced with a stiff steel bar was not considered. A potential failure

site identified by the FEA stress results is yielding or failure in compression of the core

at the right end of the reinforced specimen. Such stresses arise due to the necessity to

maintain moment equilibrium during the almost rigid body rotation of the steel reinforced

face sheet around the crack tip. Thus, when the steel reinforced specimen is loaded, the

reinforced face sheet will rotate and the right end will have a tendency to indent into

the core, possibly crushing the soft core material. Yielding or failure of the core violates

the linear-elastic approach and must be avoided. To prevent core crushing without restrict-

ing shear deformation, a short link may be pin attached between the base of the fixture and

the center of the steel reinforcement bar on both sides of the TSD specimen, see Figure 19.

Also shown in Figure 19 is the earlier discussed end block reinforcement of the core.
Figure 20 shows the phase angle (reduced formulation) vs. tilt angle results for a TSD

specimen with a H100 core and a 12mm thick steel reinforcement, with a linkage at the

right end, with and without the end block at lengths, a¼ 25, 50, 100, and 150mm. Only

positive tilt angles are considered. For crack lengths, a¼ 25 and 50mm, comparison of the

results for the reinforced and pinned configurations, Figure 20(a) and (b), show that the

linkage has virtually no influence on the phase angle. The pinned link modification influ-

ences the phase angle results only for long crack lengths, Figure 20(c) and (d). At large tilt

angles it is observed that the phase angle is approximately the same for all modification

versions. It should be kept in mind, however, that the primary purpose of attaching the

linkage at the right end of the specimen is to prevent core crushing, and based on the stress

results (not shown) this objective has been satisfied.
In Figure 21 the phase angle is plotted vs. crack length for the pinned and pinned+block

modifications of a steel reinforced (hs¼ 12mm) TSD specimen with 2mm thick GFRP

Core
reinforcement

P

Face 
reinforcement

Pink
link

Figure 19. Design modifications with pinned links at the specimen right end and a block, supporting the left
end of the TSD specimen.
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faces and a 25mm thick H100 core. It is evident that the phase angle for the pinned version
is approximately constant up to crack lengths of about 100mm, where the phase angle
increases significantly. For the pinned+block version the phase angle variation is more
pronounced over the entire crack length regime, especially at larger tilt angles. Significant
shear loading is achieved only at high tilt angles, where the sensitivity to changes of the tilt
angle is high. This would increase the level of uncertainty in actual testing. This aspect
must be kept in mind when conducting experimental studies with the reinforced TSD
specimen especially in fatigue crack growth characterization, where the mode-mixity
(phase angle) should not change as the crack grows longer.

Despite such limitations the results presented here illustrate that the modified TSD
specimen should be viable for quasi-static mixed mode face/core interface fracture tough-
ness measurements. The end block modification version was found to significantly extend
the range of phase angles.

CONCLUSION

The finite element analysis of the original TSD specimen confirms the minor influence of
tilt angle on the phase angle indicated by the Hutchinson�Suo analysis [16]. The range of
mode-mixities for the TSD specimen, however, may be substantially expanded by reinfor-
cing the loaded face sheet by a stiff metal bar. This leads to an increase in transverse shear
and associated root rotation of the crack tip. The effect of such a reinforcement was most
pronounced at short crack lengths. For typical face and core material combinations exam-
ined, the phase angle does not depend strongly on variations in face and core material
properties. Further enhancement of crack tip shear loading was achieved by supporting
the core at the cracked end of the specimen with a metal block. Core crushing at the
un-cracked end of the specimen could be avoided by supporting the reinforced face sheet
with stiff pinned links. For the investigated specimen geometry a steel reinforcement
thickness of 12mm of the face sheet was found to allow testing over a large range of
the phase angles. Thus, the modified TSD specimen and test has been identified as a viable
and promising candidate for mixed mode fracture toughness measurements of sandwich
specimens with a soft core.

ACKNOWLEDGMENTS

This work has been performed within the context of the Network of Excellence on
Marine Structures (MARSTRUCT) partially funded by the European Union through
the Growth Programme under contract TNE3-CT-2003-506141. Furthermore, the support
from the Otto Mønsteds Foundation for a guest professorship for the second author at the
Technical University of Denmark is likewise highly appreciated.

REFERENCES

1. Li, X. and Carlsson, L.A. (1999). The Tilted Sandwich Debond (TSD) Specimen for Face/core
Interface Fracture Characterization, Journal of Sandwich Structures and Materials, 1: 60�75.

2. Li, X. and Carlsson, L.A. (2001). Fracture Mechanics Analysis of the Tilted Sandwich Debond
(TSD) Specimen, Journal of Composite Materials, 35(23): 2145�2168.

Modified TSD Specimen for Fracture Toughness Characterization 1911

 at DTU Library - Tech. inf. Center of Denmark on November 29, 2010jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com/


3. Prasad, S. and Carlsson, L.A. (1994). Debonding and Crack Kinking in Foam Core Sandwich
Beams � I. Analysis of Fracture Specimens, Engineering Fracture Mechanics, 47(6): 813�824.

4. Prasad, S. and Carlsson, L.A. (1994). Debonding and Crack Kinking in Foam Core Sandwich
Beams � II. ‘‘Experimental Investigation, Engineering Fracture Mechanics, 47(6): 825�841.

5. Berggreen, C., Simonsen, B.C. and Borum, K.K. (2007). Experimental and Numerical Study of
Interface Crack Propagation in Foam Cored Sandwich Beams, Journal of Composite Materials,
41(4): 493�520.

6. Lundsgaard-Larsen, C., Berggreen, C. and Carlsson, L.A. (2007). On The Use of a Woven Mat
to Control The Crack Path in Composite Sandwich Specimens with Foam Core, In: ASME
International Mechanical Engineering Congress and Exposition, 11�15 November, Seattle, WA.

7. Sørensen, B.F., Jørgensen, K., Jacobsen, T.K. and Østergaard, R.C. (2006). DBC Specimen
Loaded with Uneven Bending Moments, International Journal of Fracture, 14(1): 163�176.

8. Østergaard, R.C., Sørensen, B.F. and Brøndsted, P. (2007). Measurement of Interface Fracture
Toughness of Sandwich Structures under Mixed Mode Loadings, Journal of Sandwich Structures
and Materials, 9: 445�466.

9. Lundsgaard-Larsen, C., Sørensen, B.F., Berggreen, C. and Østergaard, R.C. (2008). A Modified
DCB Sandwich Specimen for Measuring Mixed Mode Cohesive Laws, Engineering Fracture
Mechanics, 75(8): 2514�2530.

10. Reeder, J. and Crews, J.H. (1990). Mixed-mode Bending Method for Delamination Testing,
AIAA Journal, 28(7): 1270�1276.

11. ASTM D6671/D 6671M-06 (2006). Standard Test Method for Mixed Mode I�Mode II
Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix
Composites, ASTM International, Philadelphia, PA.

12. Quispitupa, A., Berggreen, C. and Carlsson, L.A. (2009). On the Analysis of a Mixed Mode
Bending Sandwich Specimen for Debond Fracture Characterization, Engineering Fracture
Mechanics, 76(4): 594�613.

13. Quispitupa, A., Berggreen, C. and Carlsson, L.A. (2010). Design Analysis of the Mixed Mode
Bending (MMB) Sandwich Specimen, Journal of Sandwich Structures and Materials, doi:
10.1177/1099636209104533.

14. Li, S., Wang, J. and Thouless, M.D. (2004). The Effects of Shear on Delamination in Layered
Materials, Journal of the Mechanics and Physics of Solids, 52: 193�214.

15. Ferrie, C.H., Sheinman, I. and Kardomateas, G.A. (1999). The Effect of Transverse Shear on
the Postbuckling and Growth Characteristics of Delaminations in Composites, Journal of
Engineering Materials and Technology, 121(4): 406�412.

16. Hutchinson, J.W. and Suo, Z. (1992). Mixed Mode Cracking in Layered Materials, Advances in
Applied Mechanics, 29: 63�191.

17. Dundurs, J. (1969). Edge-bonded Dissimilar Orthogonal Elastic Wedges, Journal of Applied
Mechanics, 36: 630�652.

18. Viana, G.M. and Carlsson, L.A. (2002). Mechanical Properties and Fracture Characterization
of Cross-linked PVC Foams, Journal of Sandwich Structures and Materials, 4: 99�113.

19. Suo, Z. and Hutchinson, J.W. (1990). Interface Crack Between Two Elastic Layers, International
Journal of Fracture, 43(1): 1�18.

1912 C. BERGGREEN AND L. A. CARLSSON

 at DTU Library - Tech. inf. Center of Denmark on November 29, 2010jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com/

